On some mathematical aspects of deterministic classical
electrodynamics

B. W. Stuck

Bell Laboratories, Murray Hill. New Jersey 07974
{Received 14 November 1973)

A new ive diagram some of the structure of

classical electrodynamics is presented. The diagram clearly delincates the fundamentally different
roles played by the space-time differentiable manifold (sis  vis esterior calculus) and by matter or
vacuum (vis & vis the constitutive relations for dielectric permittivity and magnetic permeability) in
electrodynamics. Two different elliptic operators, called here the Laplace-Beltrami and
Laplace—Poisson operators, arise naturally from this formulation. Some properties of eigenfunctions
of eliptic operators with compact support are briefly reviewed with regard to potential application in
numericat analysis of practical problems in clectrodynamics. The action of the so-called
inhomogencous Lorentz group on electrodynamical functions s described. Several scalar inner
products which remain invariant under the action of this group are seen to arise naturally from the
mathematical structure discussed here. By using some of these invariant quantities, a new variational
approsch to deterministic classical electrodynamics is then developed. First, a new Lagrangisn
function is presented and used to derive the Eules-Lagrange equations for electrodynamics, Second,
a series of new Hamiltonian functions are presented and used to derive the Hamiltonian equations
for electrodynamics. All results are illustrated by a detailed examination of the electrodynamical
structure of a model for an inkomogeneous nonisotropic medium.

I. INTRODUCTION the for
Although an exists on -

cal aspects of

there is app: y no clear on the

relationship of exterfor calculus and differential forms
to Maxwell’s equations. This is somewhat surprising,
because exterior calculus would hopefully clarify some
of the ying electro-
dynamics, while offering a different (more formal but
less physical) view of the structure than that of con-
ventional or classical vector caleulus, Such work hope-
fully would continue the interaction of mathematics
and physics, which has been 8o fruitful in the past.
Finally, the tremendous technological importance of
electrodynamics lends added interest to such work.

‘This paper attempts to fill some of this gap in the
literature, The scope is limited to a particular class of
models for an inhomogeneous nonisotropic medium.
Within this framework, a number of novel and well-
known results are obtained more easily and naturally
than by methods based on conventional vector calcutus.

The goal here is to unify and simplify certain
aspects of An example
of a successful attempt along similar lines can be found
in modern communication and control theory, which
have been greatly unified through the concept of state
and state variable techniques. It is hoped the approach
discussed here will find application in other branches
of physics, just as state variables have found wide
application (e.g., in electrical network theory and in
control system theory). This hope must be hy

tems might be only four-dimensional, three spatial and
one temporal, in practice, This suggests that future
work should be directed toward a better understanding
of the case, as
well as toward

of the four
in higher

Although interesting in their own right, the results
presented here are Interesting from a purely pedagogi-
cal point of view as well, One need only known the
operations or rules of exterior algebra, as well as how
to compute the total differential of a function; then the
calculation of gradient, curl; and divergence become
routine formal manipulations, but unfortunately often
devold of physical insight into the nature of the calcula-
tion, The conventional or classical vector calculus ap-
proach, with its line integrals and pillboxes, compli-
ments this method by offering great physical insight
into the nature of the calculation, but often at the ex-
pense of in the correct
answer. Both approaches have thetr merits and dis-
advantages, offering different views on the same
situation.

The initial motivation for this work is found in
Flanders.® While it was felt his approach was basically
sound, it seemed sketchy at points and could be con-
siderably more detatled. Another impetus is found in
Dyson, ? who has observed that the foundations of ex-
terior calculus were laid by Grassmann in the mid-
nineteenth century, but the tools he developed were

the following observation: Many

be adequately modeled by a set of first order ordhnry
differential equations, where the state space is a.
finite-dimensional vector space. The analogous state
space for a distributed parameter system, such as is

when the of electro-
, in favor of tools developed
to the structure of Lie groups and Lie
algebras.
An is 1ncl||ded and
the basic algebra,

and emmr caleulus, The reader familiar

discussed here, is a fintt

manifold and the vector fields associated with the
manifold. The dimensionality of the state space for
lumped parameter systems can be anything in practice;
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with these topics can proceed directly to the main body
of the paper; otherwise, this detour is advised.

‘The second section presents a commutative diagram
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which s the elect: for

an inhomogeneous nonisotropic medium; this is analo-
gous to a block diagram or signal flow graph in control
and communication theory,

The third section discusses two different differential
operators which arise from this formulation of electro~
dynamics; previous work has tended to ignore or ob-
scure this point, Various properties of the spectrum
and eigenfunctions of these operators are briefly re-
viewed, for the case where the operators are elliptic
and compactly supported.

The fourth section dwells on a group of coordinate
transformations which preserve the structure of the

of Several well-k and
new scalar inner products are seen to arise naturally
from the approach discussed here.

The fifth section ps an leulus -of

to the structure of D) A—(J,,
A new L function is dis-
cussed, and all of the are

M1, doMod, deMod, PoModP, dM-*ff, Finally, the
diagram commutes, because of the two préceding steps.

Remark: Since d®=0, the maps from A®—~ A* are
trivial. e

Choose or basis vec -
tors {dx, dy,de, icdf} for X, and orientation +dxA dy
Adz Aicdt. (c is the speed of light.) The physical nature
of each differential form is well known:

(4) A%, g, —electric, magnetic gauge.

B) A'—(4,,4,,4,), (4,,4,,4,)—eloctric, mag-
netic vector Pis P

scalar potential. g

(C) A*~(D,,D,, D), (B, ,8,, B,)=—electric displacement,

magnetic flux; (E,,E E,), (H,, H,, H,)—electric, mag-
netic fields.

gy Tads (Fogs I,p J,,)—magnetic, electric
current densities; g, p, ~magnetic, electric charge

derived from it. A new series of Hamiltonian functions
are derived from Legendre transformations on the
Lagrangian, and all of the electrodynamical equations
are rederived.

Al these results are illustrated by examining again
and again a model for an mhomogeneuus nonisotropic
medium,

1. A COMMUTATIVE DIAGRAM

(E) A*—s_, s, —magnetic, electric source.

-The question arigses of how to associate which differen-

tial form with which electromagnetic function. The
cholce adopted here offers a certain amount of physical
appeal, and is self consistent and complete with respect
to exterior calculus.

Since X is a four:
the differential forms may be interpreted intuitively as
follows:

‘Throughout this section, X is an oriented
differentiable manifold called space—time.* T} denotes
the cotangent bundle assoclated with X, and A(T§)
=T AXT?) the associated exterlor algebra. This sec~
tion is broken into two parts: first, a diagram is pre-
sented which summarizes Maxwell’s equations for a
particular class of inhomogeneous nonlgotropic media
(in effect, the equations can be read off with the aid of
this d.{agx'am); second, an example is presented to
illustrate more clearly this result.

Theorem (Classical electrodynamics —Maxwell’s
equations): B M : A*(T%) ~ A*(T}) is a smooth function of
A%(T%), and is invertible at every point of the manifold
X, then the diagram shown below commutes

wd pdpdpy
Mot lmwl M“M‘"d-u ‘..11 Pt
Lol ol

4 m

where d is the exterior derivative.

Proof: The proof proceeds in three steps: (i) all
operations shown above must be well defined on all
charts of the manifold, i.e., locally; (ii) all operations
must be capable of being pieced together smoothly on
overlapping charts; (lii) the diagram must commute,
i.e., be independent of path. Since the exterior deriva-
tve and the linear transformation”M are well defined,
all operations shown in the diagram are valid on each
chart of the On charts,
the transition functions assoclated with these chatts can
be used to smoothly plece together the operators M,
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(1) A°—gaug 1 of space—ti

@ a directed line
volumes in space—time.

(3) A*~fields—directed areas or 2-volumes in
space—time, in part directed along purely spatial di-
rections (dyA dz,dzA dx, dx Ady) and in part directed
along 2 mixture of space—time directions (dxAicdt,
dy A icdt, dzA icdl).

(4) A>—current densities—directed shells or 3-
volumes in space—time in part directed along a purely
spatial direction (dx/\ dyA dz) and in part directed along
2 mixture of space—time directions (dyA dzA icdt,
deA dxeAicdt, dx AdyA icdt).

(5) A* di
space—time.

It is interesting to give a physical interpretation to the
commutative diagram, much as in control and communi-
cation theory problems one gives a physical interpreta~
tion to a block diagram. Suppose, for example, a 1-
form or potential is known at every polnt in X, The ex-
terior of this a 2-form or
field at every point; applying the constitutive relations
plus the exterlor derivative to the field specifies a 3-
form or current density, which in turn feeds back to
modify the potentials, and so on.

In this choice of Maxwell’s
can be written using exterior calculus as:

) g, +ig,)= e igd b

or 1-

1

ted volumes or 4 in

3 is
EriCA ALY
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e et ety +ig e
=c(A, Hid) dx +c(A,, +iA ) dy
+old,, HiA ) de +(@, +1p Yicdt,

(2) dle(a,, +iA, ) dx +c(A,, +i4,) dy+clA,, +14,)dz
+ (@, +iv dicdt)

{

(ot r1an)- 2

] . )
el tid ) - Ll ¢ m,,y)) dyA da
4,,+ iA,_,)) dzAdx

4-(%‘:(3,, 14 )~ %:{A,, + m_)) axAdy

3 . @ :
+(§(¢. +ig ) — ;m clA,, +M_,)) dxNicdt

.44( Ea;(”- ip Y- ;;%ic(A,,-i-iA,)) dyAicdt

+( o i) - o, b iA_)) dzAtedt
=0c(D, +1B,) dyAds +o(D, +iB,) de A dx
+e(D, +iB ) dxAdy + (B, +48,) axAicdt
+{(B,+il Y dyAtodt+ (B, +iH,) dzMicdt,
(3) de(D, +iB,) dy/\ dz + (D, +iB ) deAdx
+eD, +iB ) dxAdy +(E, +iH,) dxAicdt
+(EB,+illYdyNicdt + (E, +ill ) deAicdf]
- 2 ] N 3
=(H(E,-HH,) - & i)+ e, +m,))
xdyAdeNicdt + (%(z, +8) = L (5,410

AT w,)) deA\ dePicdt +( 28, +am)

oy BB+ e, 4i8)) deAdyicds

+ (%c(n, +iB)+ a—‘;- oD, +1B)+ Ze(D, +in)
xdsAdyAdz
=+ ) dyAdeNicdi +(J, +id, }deA dxAicdt
w1, ) dxAdyAicdt+clp, +ip,) deAdyA dz,
@), +id,) dyA dzNicdt +(J,,,+1J,) di AdeAicdt
+ (W, +id,) dxAdyAicdt + elp, +ip,) dxA dyA\ dz)

] 3 k)
=(§(J_+(J")+ H(J_,i-i-f”] + E(J.‘-F{J")

- u—aa;c(n, + ip_))a,,/\dy/\dz/\im
=(s, +is, dxAdyAdzAicar.

The are found
by equating real and imaginary parts of (1)—(4). The
sign on ¢, and p,, must be reversed to conform to that
standard in physics.* It is agsumed here the transfor-
mation M can be written in matrix form for an in-

386
homogeneous nonisotropic medium as
(cD, ayAdz ] 'ZD, LdyAdz ]
eD, dzAdx ¢+ eD, dzeAdx
D, WAdy " L oD, aAsy
E, dxfvicar| =P Mt U phbll [
E, dyMicdt E, dyAicdr
| B, dzAvcdt] L E. aeAica
"cﬂ, dyAaz ] . cB, dyAdz |
cB, dzAdx i cB, dzAdx
cB, dxAdy . |eB, dxAdy
B, dilicar| 10 Pase +(1= Pl B, deNicat|”
H, dyAicdt . H, dyNicdt
EA dy/\a‘cdtJ H, dz/\i:dtj

where 0<p <1, In this example, M s ass\_;med tobe a
convex combination of the star operator, My and M,
where

Rt

~ 0 cp
M= ot o fe
where J, € are 3X3 matrices, 01s the all zero 3x3
matrix. p is called magnetic permeszbility, while eis
dielectric permittivity; the units are meter - kilogram
= second.

0 o
clet 0

In other treatments®® a different set of units are
often used: In these units the dlelectric permittivity ¢
and M are ; and it is
frequently states that (in these units) E,=D, H =B,
and so forth. Strictly speaking, these equalities are
quite il1-defined because the electric field (E,, ELE)
and electric displacement (D,,D,,D,) lie in orthogonal
subspaces of A%, as does the magnetic field H,H,H)
and magnetic flux (B,, B, B,). To emphasize this often
ignored fact, meter - kilogram +second units have been
adopted,

In order to model the inhomogeneity of the medium,
matrix elements in € and u are smooth functions of
%,9,2 and ict, To account for the anisotropy of the
medium, ¢ and u are assumed not to be similar to
scalar multiples of the identity matrix.

Clearly, this choice of assumed constitutive rela-
tions for f{ is not the only one that can model an in-

e di The only
assumption is that # must be tnvertible on its support,
X. The example here was chosen as illustrative of
linear ps; it can be

in any number of ways, For example, the next section
8hows A%(X) can be considered as 2 Hilbert space, the
space of all functions in L*(X); # may now be defined
as an invertible operator defined on Hilbert space.
Other generalizations are possible,

111, ELLIPTIC OPERATORS

Two ditferential operators are seen to arise naturally
from this formulation of electrodynamics, the Laplace—
Beltrami operator and the Laplace—=Poisson operator.

The Laplace—Beltrami operator A =46 + 3d, where
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& =yodos, i8 elliptic (Warner, Ref. 7, pp. 250251},
and

a: AF~AF, K=0,1,2,3,4.

Since A depends only on the underlying manifold X, a
picturesque description of A is that it is totally
geometric or topological in nature. If X 1s a compact
manifold, then the Hodge decomposition theorem shows
that any differential form u, € A* (»=0,1,2,3,4) can be
written as the sum of an exact form, 2 coexact form,
and a harmonic form which lies in the finite-dimen-
sional kernel of &,

wy=u, P du, B @ u,,% $=0,1,2,3,4,

+(J, +id, ) dx\ dyNicdt +clp, +ip,) dxA\dy/\ dz
=fledfeys,
(E) (s, +is,) dxAdyA deNicdt=ff e dfF,

where f#,fZ,f8€ A¥ (£=0,1,2,5,4), and the super-
scripts H, E, C denote harmonic, exact, and coexact,
respectively. If X is compact and simply connected, it
can be shown that (Ref. 7, p. 158 and pp. 226~229)

f¥ =const,
=0, f=0, fI=0,
1E =(const) dxA dyAdzAicdt,

where the superscripts H, E, C denote
exact, and coexact, respectively (Ref. 7, p. 228).

The Laplace—Poisson operator doMed =doMod de-
pends partly on the underlying manifold X (via the ex-
terior derivative ) and partly on the physics (embodied
in i7); this operator may be considered as partly
geometric or topological and partly physical. In the
special case which is of great practical interest where
the Laplace—Poisson operator can be shown to be
elliptic (e.g., constant permittivity ¢ and permeability
#, a homogeneous nonisotropic media) a great deal
more can be ascertained. If X is compact, then any
p-form may be wrmen as the sum of a p-form lying
in the finits kernel of the plus 2
term in the orthogonal complement of this vector space.

Since the Laplace—Beltrami operator is always
elliptic, while the Laplace—Poisson operator is often
elliptic, a brief review of some of the properties of the

and of elliptic is
included. Let E be nn elliptic operator whose support
is on a compact manifold X; then it is well known that
(Ref. 17, pp. 264—256)

[$Y) [ and of E
exist,

(2) there are an infinite number of eigenfunctions,
(8) 11 eigenvalues are nonpositive,
{4) the eigenfunctions are complete in L*(X),

(5) any function in L*(X) can be uniformly approxi-
mated by a of these on'X,

to a source-free region of
space—time. The terms 3¢ (K=1,2,3,4) and dff
(i=0,1,2,3) can be ag linear of
of the Lapl: operator. The
exact and coexact forms are also called Heriz vectors.*

The Laplace—Poisson operator, since it is a different
from the Laplac , will in

general have different eigenfunctions. Note that any 3-
form can be expressed as an infinite linear combination
of these elgenfunctions dencted {ii3}, k=1,2,+-+. Using
the exterior derivative 4, its adjoint 8, plus the Hodge
star operator *, the following statements hold (recall
the is four 50 dii}=0)
ona compuct manifold

(1) Any O-form may be written as an infinite linear
combination of

frodeiil}, B =1,2,000,

{11) Any 1-form may be written as an infinite linear
combination of

(e}, k=1,2,07,

(iif) Any 2-form may be written as an infinite linear
combination of

{5}, *=1,2,-,

(iv) Any 4-form may be written as an infinite linear
combination of

@@y, k=12,
This finding may have practical application. In semi~

device work, or in transmission of electro-
tic energy, Maxwell’s équations plus renl bound-

{6) the eigenvalues have no finite
{7 the, with each eig:

point,

ary. are often and a

. are finite-dimensional.
Exgmple; From the Hodge decomposition theorem,
(A) g, iga=fT@ofF,
B) 2(4,, +iA,Vdx +c(A,, +iA ) dy+c(A,, +iA,)dz
+(p, +io Jicdi=fi e trf o off,
+ {C) o{D, +4BYdy/\ de + (D, +iB yde Adx
T 4e(D,+iB)dxNdy +(E, +iH,) deNicdt
+(E, +m) dyA icdt +(E, +iH ) dz/\icdt
Fadfie e,
) {J, + uIn) dyAdzAicdt+(J,,+J, ) dyA dx Aicdt

J. Math. Phys., Vol. 15, No. 3, March 1974

! to the true ‘solution must often
be used. One type of numerical approximation is to ex-
pand 21l functions as a sum of a finite number of
orthonormal functions, and to truncate the sum when
an error criteria is sufficlently small, The approach
presented here makes it posslble to choose from two

sets of under some
circumstances, one set may be preferable to the other.

IV. SOME GROUP THEORETIC ASPECTS

In certaln situations, a great deal of insight is gained
by a change of coordinates. This section is concerned
with a class of coordinate transformations which form a
group, and which remain under this
class of transformations,
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Consider the semidirect product of the Lie group
S$0(4) with an affine group T, G =SO(4)X T (X denotes
semidirect product); G 18 called the inhomogeneous
Lorentz group, One parameter subgroups of T corre-
spond physically to translations of the origin of the
space—time frame. One sub-
groups of SO(4) correspond physically to rotation about
an axis or motion along an axis. It is straightforward to
show G acts transitively on X: given x< X, g G, then
gxcX. Since G:GXX—X, G is well defined on scalar
functions f< A%, and this action is denoted L,, L,: L,
XA~ A%,

Since Tx and T}, the tangent and cotangent bundles
of X, are isomorphic to the direct product of X with
itself, G has a well-defined transitive action on 7, and
T§. Since Ty can be identified with AY(T,), while T
can be identified with AYT¥), G acts in a well-detined
manner on AYT¥), denoted L,, L,:L, XA~ AL,

It 15 now necessary to extend the action of G to A?,
A%, and A%, To how this is
consider an orthonormal set of basis vectors
{61, €, €5, €.} for A* (the extension to a general basis is
straightforward). ge, is the action of gon ¢, (¢
=1,2,3,4) for some g< G; {¢;=ge,} is a set of ortho-
normal basis vectors for AV, Since {eAe,ti=1,2,3,
3=2,3,4} s a basis for A%, {geAge)li=1,2,3;
7=2,3,4} is a basis for A%, and L,: L, X A%~ A% ig the
well-defined action of G on A%(T}). Similarly, {ge,A

geNge,, i=1,2, j=2,3, k=3,4} is 2 basis for A,
and {ge,Age.Age,Age,} 18 a basis for A%, which lead
to well-defined actions of G, Ly: LyX A®— A, and
L,:L,XA*~ A%, This can be summarized ag follows.

Proposition: The diagram shown below commutes

Az a4 pad jod p
wl n) nl ol o]
A d AV d g3 gAY gAY

Proof: Again, the proof has three parts. First, ob-
serve that d and 4’ (the exterior derivative in the new
coordinates), as well as L, (k=0, 1,2, 8,4) are well
defined on each chart of X, Second, note that d, d’,
and L, (k =0,1,2,3,4) are well defined globally, using
the transition functions to smoothly piece together the

on charts. Third, the

verification the diagram commutes is stralghtforward,
because of the two preceding steps.

Since X has a well-defined inner product (a, b) is well
defined, where either a€ A%, be A%, or ac A¥, sbe AVX,
Both the real and imaginary parts of all thege inner
products remain invariant under the action of G. The
and L result from form«

of these inner p: 245

ing linear

E: In , the inner
products invariant under the action of G are

W) g, +ig,),+l(s, +is,) deA dyA de\icdt)y
=(g, +ig,)s,+is,)
M) {elA,, +i4, ) dx + o4, +id, Ydy + olA,, +iA, ) de
+o, +ip JAicdt, X
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Wy #40,) dyA dzAicdt +(J,, + id, ) de\dx/\icdt
(T +4d,) dsA dyA icds + clp, +1p,) dcAdyAdz])
=clA,, +id W, +id, ) +cl4,, +iA ), +id,)
+ (8, + AL, +id,) = @, + 9 Jelo, +ip,),
(1) {e(D, +iB,) dy/Adz + c(D, +iB ) de/\dx
+e(D, +iB,) dx/\dy +(E, +4H,) dx/Nicdt
+(E, +i#l YdyNicdt + (B, +iH ) dz/Nicdt,
lc(D, +1B ) dy/\de +(D, +1B ) de\dtx
< 4olD,+1B,) ds/\dy + (B, + iH,) dx/Nicdt
+(E,+i8,) dyNNicdt + (E, +il ) dzPicdi])
=MD, +iB)E, +iH Y+ c(D, +iB)E, +iH)
+¢(D,+iB)E, +iH )},
v) [, +ig) P=(ag, +12)g, +ig.),
(). el + A ax +olA,, +iA_ ) dy +clA,, +id,,) dz
+(p, +i@ Yicdt|?
| A P A, ALY (4, 414 Y]
+(o,+ig P, )
(v1) fe(D, +1B,) dy/\dt +¢(D, +iB ) dz/\dx
+ (D, +iB,) de/\dy + (E, +iH,) dx/\icdt
+(B,+18 ) dy/\icdt +(E, + il ) dzNicdt |*
=c(D, +1B,Y + (D, +iB )" + (D, +1B "]
+(E +iH P +(E,+iB )+ (é, +iH ),
(1)) (I + 40, ds\deNicds + (7, + 17, ) deNdxNicdt
+ et 0, ) d\dyNicdt +clp, +ip,) dxNdyAde ||
= P+ + P+ (T, +id, )
o+ ep, +ip, ),
(wts) [ (s, +is,) de/NdyAde/Nicdt|*=(s, +is, 7.
Remark: (1), (iv), and (viil) are often overlooked
invariants, {cf. Refs. 5,6)
V. VARIATIONAL PRINCIPLES

For the sake of completeness, as well as to have an
alternate interesting way in which to view the mathema-
tical in al and

will now be The

results presented here are more complete than any
other of which the author is aware, ®® and illustrate a
new relationship between dynamics based on exterior
calculug and dynamics based on a calculus of variations
approach. Since many excellent treatments®® can be
found in the onlL and

, but few good can be found on how
to apply this , the general is
cursory, while the example is dwelt on at length.

The Lagrangian function L 18 defined as

Lt MT*XO)XATHX0)-R,

L= BRE(+ (g, w12,) + 2ty wott) — (ty, watty) = {ttg, vethy)
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TABLE I TABLE I
Components of aasociated
generalized momentum
x - £ ¥ L] el
s ra v A,
i z Ay 0 b~ &
P —ed gy Ay [
cB, iy 0 [
icH, [ iy [
Mokl BY e &

where RE{a+1ib)}=a, a,heR,

In order to specity L on a chart of a manifold, one
must give the local coordinates of the chart, all els-
ments in A(T*(¥}) and all partial derivatives of ele-
ments in A(T*{X}) with reapeet to local The

", ted ] -
iH, —ed,,  icAn,

e, —y o

o, & ]

b, [ L

slements in A{T*{X}} are called gemeralizad cwrdmm
while the partial are called
velocifies.

The genaralized momenta are defined as the partials
of L with respect to the gensralized veloecities. The
Ham iltonion function H 18 derived from L by computing
the inner product of the generalized velocities with
their respective generalized momenta and then sub-
tracting the L L; thie lon 18 called
a Legendre iransformation. The Hamiltonian function B
Is apecified on a chart of a manifold by specifying co-
ordinates on the chart, the generalized coordinates and
the generalized moments.

Solutions to Maxwell's equations are extremals to the
action integral
[ L deypdegp degp, de,,

whers the integral ls evaluated along a space—tme
trajectory beginning at point 1 and ending at point 2,
and de; Ade, AdeNde, 1a 2 unit basis vector for A%,
For a more complete and preclse discussion of how to
evaluate this integral, the reader is referred to the
bibli by (Spivak,'® Loomd -, Warner™),

Given a Lagranglan fnction, a well-defined recipe
dué to Euler and Lagrange exists for Hnding the asso-
clated equations of motions whose salutions are sx-
tremals to the actlon integral, Given a Hamiltonian
fanction, a well-defined formula due to Hamilton exists
for finding the associated equations of motion. Since
both thesa hea are of the tiky
tive relations, tut depend only on the underlying ditfer-

to be totally geometrie or topological in nature, inde-
pendent of matter or Vacaun.
Example: The Lagrangian function L is
Lowm=(cD +E +eD,- E,+eD, -E)+(cB, +H, +eB,-H,
reB H) = (g2, - 2,) (oA d, +ed d,,
AT AP ep ) (oA F el T oA
+P g ehg)e

{A) The generalized coordinates are g, and ig_. The
generalized velocitios are all partials of g, and ig,, with
respect to x, ¥, 7 and def, The x component of the gen-
eralized momenturm I”oed.a'bad wlth AL

.

FmpLY a(a; ?axi am_ aiagfaaxj =
Note that to compute the generalized momentum it is
meceasary not only to compute (31/7e4, ) but also to
know from Maxwell’s equations that ded, Sa(ag/ix)
=+1. In ke manner it is straighttorward to find all
the generalized momenta, and the results are summar-
ized in the Table T,
The Hamiltonian function H 18

Hym=(cB H, +cB H +eB -H})+{cD E +cD+E

+0D, B = (85~

and is ind dent of the
Euler Lagnnsa equations o( motion are

The

entiable manifold and its associated vector flelds, the i ‘5%* i S A
resulting equations of motion are said, picturasquely, "’ = i "J = =) am P ="
TABLE It TABLE IV

Components of aasocisted of

generalized moments

¥ ¥ z it ¥ z el

E, ~E, ot £ L, o
m -z, 0 £’ Uy v ) 0.
g E, -E, o Teua o I & o
iy —ieB,  —ich, ~icB, o o 0 -z,
oy [ il —iH, By i o 0 [}
iy —iH, L] iH, L1 [ b (1] a
fedy, 1H, —iH o folar o ¥ iy o
'S Dy, -, -y, iy L] o (] —igy,
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R I ARY W.J-;;W..J-a—,;,—-w.=°

of metion are 1l

e aJ.J-u"‘ 3“"—"‘3&?"”.)»

=.-4¢,--(h e a’u + “"*am c.u,)

Bince the is of the

the dual involved of
H with respect to momenta are all gero, Note these
equations are identical to those in Sec. 2, Eq. (4).

(B} The
momenta are tabulated in Table II.

‘The Hamiltonian function H s
Hym=(cD B, +cD E,+cD,-E)+|H, -cB, +H, cB,
+H, B (g8, = gaa) =leAy, Iy ted, T,
F e, Ty Pt o) Hleh gy, oAy,
+:A"J"+¢.-c&_]

The Euler—Lagrange and Hamiltond
motion are foand in Bec, 2 Eq. (3).

[C) The and
momenta are tabulated in Table IOI.

‘The Hamiltonlan function H is

an equations of

Hy =(cB, H.+cB, H,+cB,-H)+(cD, -E +¢eD, E,
+eD, B =850 =5

The Euler=Lagrange and Hamiltonian equations of
motion are found in See, 2, Eq. (2),

() The lized coordinates and
momenta are tabulated in Table IV.

The Hamiltontan function & is
Hy=(cD,E,+¢D,-E, +eD, E) =B, H,+cB, H,

BB+ At + eA g, AT, 4, 0 ;

(2,

(e,

et

) =lvy, ..
v) =aly, ..

LATICN
n)

e

» gy [

The quotient space T*= ¥*/S(V*), the set {x: (y=x)
€ S(V¥), for all y& V¥, is called the set of kh order

J. Math, Phys., Vol. 15, No. 3, March 1974

(oA g+ A, Tt €A Ty 9 c0).
The Euler—Lagrange and Hamiltonlan equations of mo-
tion are found in Sec. 2, Eq. (1)

{E) The liged
moments mmmarludlnﬁhlu V.

The Hamiltonian function H {a
Hy==L
=={cB,-H +¢B -H +cB,-H)+(cD,-E, +cD,-E,
oD B — (88— Bu3d) ~ (Al AT,
+el, do A0 e ) Fled J oA d, +ed d,

+@,20,).
The Euler—L and of
motion are
£=0, ig,=0.
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APPENDIX: MATHEMATICAL PRELIMINARIES

This section is largely tutorial, sketching some of the
algebra, differen-
tiable manifolds, and exterior calculus. Suitable refer-
ences can be foand in the bibliography (Welson,*
Warner, " Bpivak,® Loomis -Sternberg™).

A. Multilinear algabra

Let R dencte the real numbers, and let ¥ and Whe
finite-dimensional real linear vector spaces. V* denotes
the dual space of ¥, consisting of all real valued func-
tions of V. The divect product of ¥ with ¥ is denoted
V=W and consists of all linear combinations of pairs
(u, w), with v= V and we W, The k-fold direct product

of ¥ with itself, denoted ¥*, the /-fold direct product of
V* with itself, denoted ¥=', and the mixed direct
prndn:luf?‘x\’"amdeﬂnedlnanldeﬂﬂcslh!vlm.

Lat S{V*) be the subspace of ¥ generated by the set
of all elements of the form

oMo, e ofeV, i=1. &,
ag R.

‘_cm!msﬂ.ml tensors. In a similar manner, the

quotient space T*®=V*=/5(V*") can be defined, and Is
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called the set of mth order covariant tensors. Finally,
the quottent space of mixed tensors, T* *==Vy**=/
S(V**") can be defined in an analogous fashion, The
terms contravariant and covariant will in general be
dropped, being clear from context (cf. Spivak,*? pp.
4—8 to 4—12). The direct sum T(V), denoted by &,

&

TV} =T TH @ T8 Q.= é;ﬁ.-.
where 7%*°wR, is called the tensor aigebraof V. Con.
sider an element in T*(V), denoted A; A is called

| alternating or skew-symmetric if

Ay eeesVppenesVpenn, 8)==Alty, ..o 0001,

The set of all alternating kth order tensors is denoted
AXV), and is clearly a subspace of T%(V), HL:V - W
ig a linear transformation, then L* : T*(W) — T%(V) is
defined by (L*T*){p,, . ..,v) =T*[L{v),...,Liv)]. In
particular, if L:V—~ W, then

LNy = (L*GHAL* )

AVY=AYV)® - -+ AX(V),  equals dimension of V, is
the comtravariani exterior algebra of V, while A(V*)
=A%V*)@ ¢+ & AYV*) 18 the covariant exterior algebra

)

Yy,...,0,€V.

wAv=(=1""vAu,
(i +0)Ar = AR +(\0),| w,8,,55€ AYV),

#/\Nwy +02) = (@A) + (5o}, Yo, 0, 0, €AYV,
u/\wAw) = wA\o)Aw, we A(V),
{@\v =u\av) =aluAv]] acR.

+11,} 18 a basis for ¥, then {es A+
«si;=1,...,n} is a basis for A'(V}. In

rticular, note that e A+ Aeiy iy e yig=1y..,n)
1s a basis vector for A"(V), Since A"(V) is nne-dimen-
sional, the sign on this basis vector can be either
positive or negative, corresponding to a choice in
ovientation (cf. “right-handed” and “left-handed” co-
ordinates in R%).

Let {,): VXV —R be the standard sum-of-squares
inner product on V, positive definite and symmetric in

of V [which is defined in a2 mamer entirely to
A{W)]. This work will concentrate entirely on exterior
algebra. Multiplication in the exterior algebra A(V) is
denoted by “/\” the exterior or wedge product, a
natural of the th: cross
product operation on two vectors. The exterlor algebra
is a graded algebra: if uc ANV), ve AYV), then uAv

€ AMI(V). The exterior product obeys the following
properties:

its Choose an basis for V,
{ers-.. 8} Letae ANV), be AYY),

aliy, ,l.)e,l/\---/\e,., alt;, ,i)eR

z
0oy

b= g;“‘ blh,,

1 the inner product of a and b, denoted (s, b) is defined by

sides Ao Aers Yisy. .. i)ER,

(,',,)={,, WBln Wb, iNegen ey

The Hodge siar operatoy, denoted »,w: AXV)— A"NV),
18 well defined by the requirement that for any orthonor-
mal basis e,,...,e,0f V,

sie A Ned=2le N\ - Aey),
where the plus sign is chosen if +e,/\+ Ae,/e,.,
I\ Ae, 18 in the basis for AXV), and the minus sign
is otherwise chosen.

The requirement on the inner product and Hodge star
operator that the basis be orthonormal can be relaxed,
and the interested reader is referred to the bibliography
(Warner,” Flanders, Loomis-Sternberg, ! Spivak'?).

Example (R*): Choose a rectangular set of orthonor-
mal basia vectors {x,, u,, u,}:

A(R®) Basis

ARY1

AR gy 1y 8,
AR Ay, 4, Nat ey 1N\,

J. Math. Phys., Vol. 15, No. 3, March 1874

Rl
kel
M rmuAsAs
Dual Forma

ol =u,Au, Aoty u N\, =u,,
o=, /\y, A=,
N\ i, Aty =ty
uN\w,, o, Ay Moy = -1

A zero form may be interpreted physically as a
scalar, while a 1-form may be interpreted as a directed
line segment, a‘2-form as a directed area, and a 3-
form as a directed volume.

Example (Space=Time): (For an extensive discussion
of the mathematics underlying space—time, the reader
18 referred to Pearose.®) Choose a rectangular set of
orthonormal basis vectors {dx,dy,dz, icd} where i
=+v=T and ¢= speed of light, with orientation
+dxN\dwA dz/\icdt:
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A {Space—Time) Basis
A 1
A dx, dy, dz, iedt
Ay dyN\dz, def\ix, ax\dy, asNicdt, avPNicdt, dzf\icdt
A ayNdziNicat, azl\axNicat, asl\aviNicat, axf\ay/\dz
A axA\ayN\ae/Nicat
Dual Forms The tangent space of X at p is the set of all tangent vec-

1 =ax\ayAdz/icit,
sdx=dyN\dz/Nicat,
sdy=dz/N\dx/\icat,
*dz=dxN\ay/Nicat,

kacait =~ds\dy\dz,
*dy\dz=dx/Nicdt,

wdxf\icdt =dy\dz,

sdy/\icdt =dz/\dx,

*dzf\icdt =dx/\dy,
dy\dz/\icdt = - dx,
rdz/\dx/\icdt = - dy,
*di/\dyNicdt = -dz
sdzN\dx=dy/Nicdt, *dx\dy\dz=icdt,
sdx\dy=dz/\icdt, *dsNayNde/Nicat=1.
Note: *oven, =(~1)%,, u, € A*, £=0,1,2,3,4.

B. Differentiable manifolds

Let X be a set, U an open subset of X, and m a map,
m : U~ VCR" where m is bijective (cne-one and onto).
The pair (m, U) defines a chart on X; m specifies local
coordinates on a subset of X. Consider two charts on
X, (my,Uy) and (m,, Uy); suppose mym;!, mm;' :R"—~R"
are C* functions, i.e., differentiable 2 times but not
(k+1). mym;' and mym;! ave called transition functions.
A collection of charts on a set X ig denoted 4; A is
called an atlas for X if the chart domains cover X, and
the associated transition functions have open domains
and are C*. A complete atlas is the union of all possible
atlases for a set X. A differentiable manifold is a set X
together with a complete atlas. Intuitively, a differen-
tiable is a union of i gets, each of
which is locally diffeomorphic to R, which is pieced
together by the transition functions.

Let X and ¥ be differentiable manifolds. Choose any
chart on X and ¥ with coordinate maps m, and m,,
respectively, Then f:X—Y is defined by the composite
map mjofom,. Let p be a point in R, » a vector in R™.
To every function f defined in the of p,

tors, for all veR¥. The tangent space of X at p can be
shown to be a vector space, and thus has an associated
dual vector space, called the cofangent space of X at p,
the set of all linear functionals on the tangent space.
The tangent bundle of a manifold X is the direct product
of the set of all tangent spaces at all points p € X; the
cotangent bundle is the direct product of the set of all
cotangent spaces at all points p ¢ X with X.' A Riemann-
ian differentiable ld 18 a di

with a prescribed norm on the tangent bundie.

Example: Let X be = finite.
Choose a basis for X, {e,,...,€,}, 80 x€ X can be ex-
pressed a8 r=x¢, ++ -+, Define the coordinate
map m{xe, ++ -+ +x,e)=(x;...,x,). Anatlas for X is
the set of coefficients, with respect to the basis
{e,-++e,}, of all points x € X. A second atlas for X is
the set of coefficients, with respect to a different basis
{ei,.. ., e}, of all points xe X. The transition functions
are given by a C” linear transformation describing the
change of basis. A complete atlas can be generated by
considering all possible sets of basis vectors for X;
thus, X is a differentiable manifold. The tangent space
and cotangent space of X at a.point p are clearly n-
dimensional, so the tangent bundle and cotangent bundles
are locally diffeomorphic to R, Together with the -
standard Euclidean norm on the tangent bundle, X is a

vector space.

C. Exterior calculus

If f:R"~R is a scalar differentiable function of #
variables, then f is a zevo differential form; or 0-form.
The total differential of £, df(x,, . .., %,)={d//ox)dx,
++++ +(3f/x,)dx, is talled a one differential form or

1-form if each component 3f/0x,, .k=1,...,n 18
ditferentiable. Note that f may be considered in A°,
while df is an element of A, The extevior derivative

associate a number called the directional derivative of
£ in the direction v at p, denoted D,f(p) and defined by

D)= 5 o +t0)],

Congider now the manifold X; the tengent vector to X at
p in the direction v is a map which associates with
every C" function £, defined on a neighborhood of p, a
real number D, f{p) such that

) fi=f, tmplies DAG)=DA®),
{11} Df+8¥p)=D f(p) +D g @),
) pLf ) =D, OVg®) +10) D, 20N,
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the concept of 2 total differential using
exterior algebra:

Theorem™: Let uc A*. Then the exterior derivanve
of u is due A*, and is defined by

du= ,_Qqn . G NNy,
where duy,,, ., i8 the total differential of the i, com-
ponent of u, and the exterior derivative d obeys the
following properties:
(1) dlu+0v)=du+dv
(1) dA\o) =au/\v +(=1Pu\dv}y ueA?,
(iff) d(de)=0= ded=0

veAl,
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A differential form « is called closed if du=0, exact if
dv=u; it can be shown every exact form is closed, but
the converse is not true. The adjoint & of the exterior
derivative i8 defined such that

Gu,v) =(u,b0), ucA*, veA*,

It can be shown §==xados. A differential form is called
coclosed if Su=0, coexact it bv =u. The Laplace—
Beltrami opevator is defined as A=dd +4d, and is
linear, A:A*—~A*(k=0,...,n). Elements in the kernel
of & are called karmonic, and the set of all such k-
forms is denoted H*={u : 84 =0, xc A*}. It can be shown
the Laplace—Beltrami operator is elfipiic (Warner’,

pp. 260—251),

A question of great practical interest is solving Au
=v, given v subject to suitable boundary conditions.
For the special case where the underlying manifold X
is compact, this question has been answered by

Theorem” (Hodge—DeRham—XKodaira): Au=2 has a
unique solution u € A* iff v € A* is orthogonal to H*,
Fur , A* can be into a direct sum
of three mutuzlly orthogonal vector spaces,

r=H'@ AAY
=H'®(d6 +6d)(AY) -
=H'@d(A") DO(A™)
and H* is finite-dimensional.
Example (R%): A®% A& p34 4,

For choose a_ or
basis {dr,dy,de} with orientation +dx/\dy/\dz. Then

hen®, dio=Lass Ldy +Lareny
fi=fisx+fiydy +fi dze A},
= (Eaé:dz ¥ ga[;iay + Eaf!zl)/\dz
+(-a%dx + %dy + %)A?y
+<2%dx+ %ld;w '—’g*‘ldz /\d:
= (% - %ﬁ‘:) dshdz+ (?a"; - g:-)dz/\dz
+ (gaé: - %‘-) dxAdy € A%
Fa=Fas@¥/\dz +£,,d5/\dx + fy dxdy A2,
A= (—agfdx + 9% dy+ faff dz) AdyAdz

By s 4, Bfny )

+(axdx+ oy Yt 5adz) dx ‘dx
fus e fa )

+(az dx+ oy dy + = dz)AdxAdy

("fﬂ + 'a% -f!l) AdxAdyAdze &%,
fudsAdyNdze A®, "df,=0.
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Similarly, it can be shown that
=% h %N z
= sxdyAdz+ ay_dz/\dx +3Ldshdye Y,

(- e (- 4o -3

o, = il + 'Styu -fl‘ €4A°,

¥,=0.
Thus, the exterior the
of gradient, curl, and divergence. The Laplace—
Beltraml operator A=43 +8d simplifies for this choice
of basis. Define D=~ (92/02% +28%/3y* +8%/22%), so

s gz g
stom=(a+ 2+ S o=t
af,=(Df,)dx +(Dfy,)dy +(Dfy ) dz,
of,=(Df,) dyN\dy +(Df,) dz/\dx +(Df, ) dx\dy,

2 ' i
sm(s + & + ) nasNis Az =) axPasiNaz.
If the manifold is restricted to a compact subset of R,

then the Hodge—DeRham—Kodaira decomposition
theorem shows that

fo=fi®ofF,
fi=fledfooff,
fo=f{ 0dff @S,
f=fodf,

where the superscripts H, E, and C dencte harmonic,
exact, and coexact, respectively. To be more explicit,

So=f @ 8 fSax+rSdy +£5dz)
o[+ s+ 21
v fisfledfe 6[f°dy/\dz +7E dxAdx +1S dxAdy)
=fle [ Fdict f;a,. + j;,‘aa
o[- e
3
(s -~sf~) ae.
fa=flodlfldx+fEdy +fEdz)® 8 ff dxA\dsA dz]
=t (Lt - &) dshas
o2 - L) anas +(ZsE L) anas
e [a%f-cdy/\dt + % fEdeNdx + % f,"ag/\ay],
fo=f ed[f-',d:vl\dz +f.‘, de/\dx + 5 axN\ay]
=r'e [(ax ¥ 3y it e f")””‘NyNz]

For the special case where the manifold is simply
connected,

f§ =const, =0,
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. f&=0, fff=(const)dx\dy/\dz.

In other words, any scalar O-form can be written as
the sum of a constant function plus the divergence of a
function, any 1-form can be expressed as the curl of a
vector valued function plus the gradient of a scalar
function, any 2-form can be written as the curl of a
vector valued function plus the gradient of a scalar
function, and any 3-form can be written as the sum of
a constant function plus the divergence of a vector
valued function.

A second approach to this decomposition is to expand
each f, (2=0,1,2,3) in eigenfunctions of the Laplace—
Beltrami operator:

Fom R+ 3G o8I0,

A= ;2 o) d®+ 5 5, 00,

A= ;; e du"+ £, o 00,
i+ Z (f,,dx")du“.

The {u}}, j=1,2,..., i=0,1,2,3 are eigenfunctions of
the Laplace—Beltrami operator
A:A'—~AY, §=0,1,2,8,
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