
A complex number can be visually
represented as a pair of numbers (a, b)
forming a vector on a diagram called an
Argand diagram, representing the complex
plane. "Re" is the real axis, "Im" is the

imaginary axis, and i satisfies i2 = −1.

Complex number

A complex number is a number that can be expressed in the
form a + bi, where a and b are real numbers, and i represents
the imaginary unit, satisfying the equation i2 = −1. Because no
real number satisfies this equation, i is called an imaginary
number. For the complex number a + bi, a is called the real
part, and b is called the imaginary part. The set of complex
numbers is denoted by either of the symbols ℂ or C. Despite the
historical nomenclature "imaginary", complex numbers are
regarded in the mathematical sciences as just as "real" as the real
numbers, and are fundamental in many aspects of the scientific
description of the natural world.[note 1][1][2][3][4]

Complex numbers allow solutions to certain equations that have
no solutions in real numbers. For example, the equation

has no real solution, since the square of a real number cannot be
negative. Complex numbers, however, provide a solution to this problem. The idea is to extend the real
numbers with an indeterminate i (sometimes called the imaginary unit) taken to satisfy the relation i2 = −1, so
that solutions to equations like the preceding one can be found. In this case, the solutions are −1 + 3i and
−1 − 3i, as can be verified using the fact that i2 = −1:

According to the fundamental theorem of algebra, all polynomial equations with real or complex coefficients in
a single variable have a solution in complex numbers. In contrast, some polynomial equations with real
coefficients have no solution in real numbers. The 16th-century Italian mathematician Gerolamo Cardano is
credited with introducing complex numbers—in his attempts to find solutions to cubic equations.[5]

Formally, the complex number system can be defined as the algebraic extension of the ordinary real numbers
by an imaginary number i.[6] This means that complex numbers can be added, subtracted and multiplied as
polynomials in the variable i, under the rule that i2 = −1. Furthermore, complex numbers can also be divided
by nonzero complex numbers.[3] Overall, the complex number system is a field.

Geometrically, complex numbers extend the concept of the one-dimensional number line to the two-
dimensional complex plane, by using the horizontal axis for the real part, and the vertical axis for the imaginary
part. The complex number a + bi can be identified with the point (a, b) in the complex plane. A complex
number whose real part is zero is said to be purely imaginary, and the points for these numbers lie on the
vertical axis of the complex plane. Similarly, a complex number whose imaginary part is zero can be viewed as
a real number, whose point lies on the horizontal axis of the complex plane. Complex numbers can also be
represented in polar form, which associates each complex number with its distance from the origin (its
magnitude), and a particular angle known as the argument of the complex number.
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The geometric identification of the complex numbers with the complex plane, which is a Euclidean plane
(ℝ2), makes their structure as a real 2-dimensional vector space evident. Real and imaginary parts of a
complex number may be taken as components of a vector—with respect to the canonical standard basis. The
addition of complex numbers is thus immediately depicted as the usual component-wise addition of vectors.
However, the complex numbers allow for a richer algebraic structure, comprising additional operations, that
are not necessarily available in a vector space. For example, the multiplication of two complex numbers always
yields again a complex number, and should not be mistaken for the usual "products" involving vectors, like the
scalar multiplication, the scalar product or other (sesqui)linear forms, available in many vector spaces; and the
broadly exploited vector product exists only in an orientation-dependent form in three dimensions.
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An illustration of the complex number
z = x + iy on the complex plane. The
real part is x, and its imaginary part is
y.
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A complex number is a number of the form a + bi, where a and b
are real numbers, and i is an indeterminate satisfying i2 = −1. For
example, 2 + 3i is a complex number.[7][3]

This way, a complex number is defined as a polynomial with real
coefficients in the single indeterminate i, for which the relation
i2 + 1 = 0 is imposed. Based on this definition, complex numbers
can be added and multiplied, using the addition and multiplication
for polynomials. The relation i2 + 1 = 0 induces the equalities
i4k = 1, i4k+1 = i, i4k+2 = −1, and i4k+3 = −i, which hold for
all integers k; these allow the reduction of any polynomial that
results from the addition and multiplication of complex numbers to a
linear polynomial in i, again of the form a + bi with real
coefficients a, b.

The real number a is called the real part of the complex number
a + bi; the real number b is called its imaginary part. To emphasize, the imaginary part does not include a
factor i; that is, the imaginary part is b, not bi.[8][9][3]

Formally, the complex numbers are defined as the quotient ring of the polynomial ring in the indeterminate i,
by the ideal generated by the polynomial i2 + 1 (see below).[6]

A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary
number bi is a complex number 0 + bi, whose real part is zero. As with polynomials, it is common to write a
for a + 0i and bi for 0 + bi. Moreover, when the imaginary part is negative, that is, b = −|b| < 0, it is
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A complex number z, as a point (red)
and its position vector (blue)

common to write a − |b|i instead of a + (−|b|)i; for example, for b = −4, 3 − 4i can be written instead of
3 + (−4)i.

Since the multiplication of the indeterminate i and a real is commutative in polynomials with real coefficients,
the polynomial a + bi may be written as a + ib. This is often expedient for imaginary parts denoted by
expressions, for example, when b is a radical.[10]

The real part of a complex number z is denoted by Re(z) or ℜ(z); the imaginary part of a complex number z
is denoted by Im(z) or ℑ(z).[1] For example,

 and 

The set of all complex numbers is denoted by C (upright bold) or ℂ (blackboard bold).[1]

In some disciplines, particularly in electromagnetism and electrical engineering, j is used instead of i as i is
frequently used to represent electric current.[11] In these cases, complex numbers are written as a + bj, or
a + jb.

A complex number z can thus be identified with an ordered pair
(Re(z), Im(z)) of real numbers, which in turn may be interpreted as
coordinates of a point in a two-dimensional space. The most
immediate space is the Euclidean plane with suitable coordinates,
which is then called complex plane or Argand diagram,[12][13][14]

named after Jean-Robert Argand. Another prominent space on which
the coordinates may be projected is the two-dimensional surface of a
sphere, which is then called Riemann sphere.

The definition of the complex numbers involving two arbitrary real
values immediately suggests the use of Cartesian coordinates in the
complex plane. The horizontal (real) axis is generally used to display
the real part, with increasing values to the right, and the imaginary part
marks the vertical (imaginary) axis, with increasing values upwards.

A charted number may be viewed either as the coordinatized point or as a position vector from the origin to
this point. The coordinate values of a complex number z can hence be expressed in its Cartesian, rectangular,
or algebraic form.

Notably, the operations of addition and multiplication take on a very natural geometric character, when
complex numbers are viewed as position vectors: addition corresponds to vector addition, while multiplication
(see below) corresponds to multiplying their magnitudes and adding the angles they make with the real axis.
Viewed in this way, the multiplication of a complex number by i corresponds to rotating the position vector
counterclockwise by a quarter turn (90°) about the origin—a fact which can be expressed algebraically as
follows:

Visualization

Cartesian complex plane

Polar complex plane
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Argument φ and modulus r locate a
point in the complex plane.

An alternative option for coordinates in the complex plane is the polar
coordinate system that uses the distance of the point z from the origin
(O), and the angle subtended between the positive real axis and the
line segment Oz in a counterclockwise sense. This leads to the polar
form of complex numbers.

The absolute value (or modulus or magnitude) of a complex number
z = x + yi is[15]

If z is a real number (that is, if y = 0), then r = |x|. That is, the
absolute value of a real number equals its absolute value as a complex
number.

By Pythagoras' theorem, the absolute value of a complex number is the distance to the origin of the point
representing the complex number in the complex plane.

The argument of z (in many applications referred to as the "phase" φ)[14] is the angle of the radius Oz with the
positive real axis, and is written as arg z. As with the modulus, the argument can be found from the
rectangular form x + yi[16]—by applying the inverse tangent to the quotient of imaginary-by-real parts. By
using a half-angle identity, a single branch of the arctan suffices to cover the range of the arg-function,
(−π, π], and avoids a more subtle case-by-case analysis

Normally, as given above, the principal value in the interval (−π, π] is chosen. Values in the range [0, 2π)
are obtained by adding 2π—if the value is negative. The value of φ is expressed in radians in this article. It
can increase by any integer multiple of 2π and still give the same angle, viewed as subtended by the rays of
the positive real axis and from the origin through z. Hence, the arg function is sometimes considered as
multivalued. The polar angle for the complex number 0 is indeterminate, but arbitrary choice of the polar
angle 0 is common.

The value of φ equals the result of atan2:

Together, r and φ give another way of representing complex numbers, the polar form, as the combination of
modulus and argument fully specify the position of a point on the plane. Recovering the original rectangular
co-ordinates from the polar form is done by the formula called trigonometric form

Using Euler's formula this can be written as

Modulus and argument
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A color wheel graph of the

expression 
(z2 − 1)(z − 2 − i)2

z2 + 2 + 2i

Using the cis function, this is sometimes abbreviated to

In angle notation, often used in electronics to represent a phasor with amplitude r and phase φ, it is written
as[17]

When visualizing complex functions, both a complex input and output
are needed. Because each complex number is represented in two
dimensions, visually graphing a complex function would require the
perception of a four dimensional space, which is possible only in
projections. Because of this, other ways of visualizing complex
functions have been designed.

In domain coloring the output dimensions are represented by color
and brightness, respectively. Each point in the complex plane as
domain is ornated, typically with color representing the argument of
the complex number, and brightness representing the magnitude. Dark
spots mark moduli near zero, brighter spots are farther away from the
origin, the gradation may be discontinuous, but is assumed as
monotonous. The colors often vary in steps of π3  for 0 to 2π from red,
yellow, green, cyan, blue, to magenta. These plots are called color
wheel graphs. This provides a simple way to visualize the functions
without losing information. The picture shows zeros for ±1, (2+i) and poles at ±√−2−2i.

Riemann surfaces are another way to visualize complex functions. Riemann surfaces can be thought of as
deformations of the complex plane; while the horizontal axes represent the real and imaginary inputs, the single
vertical axis only represents either the real or imaginary output. However, Riemann surfaces are built in such a
way that rotating them 180 degrees shows the imaginary output, and vice versa. Unlike domain coloring,
Riemann surfaces can represent multivalued functions like √z.

The solution in radicals (without trigonometric functions) of a general cubic equation contains the square roots
of negative numbers when all three roots are real numbers, a situation that cannot be rectified by factoring
aided by the rational root test if the cubic is irreducible (the so-called casus irreducibilis). This conundrum led
Italian mathematician Gerolamo Cardano to conceive of complex numbers in around 1545,[18] though his
understanding was rudimentary.

Work on the problem of general polynomials ultimately led to the fundamental theorem of algebra, which
shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher.
Complex numbers thus form an algebraically closed field, where any polynomial equation has a root.

Many mathematicians contributed to the development of complex numbers. The rules for addition, subtraction,
multiplication, and root extraction of complex numbers were developed by the Italian mathematician Rafael
Bombelli.[19] A more abstract formalism for the complex numbers was further developed by the Irish
mathematician William Rowan Hamilton, who extended this abstraction to the theory of quaternions.[20]

Complex graphs

History
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The earliest fleeting reference to square roots of negative numbers can perhaps be said to occur in the work of
the Greek mathematician Hero of Alexandria in the 1st century AD, where in his Stereometrica he considers,
apparently in error, the volume of an impossible frustum of a pyramid to arrive at the term 

 in his calculations, although negative quantities were not conceived of in Hellenistic
mathematics and Hero merely replaced it by its positive ( ).[21]

The impetus to study complex numbers as a topic in itself first arose in the 16th century when algebraic
solutions for the roots of cubic and quartic polynomials were discovered by Italian mathematicians (see
Niccolò Fontana Tartaglia, Gerolamo Cardano). It was soon realized (but proved much later)[22] that these
formulas, even if one was interested only in real solutions, sometimes required the manipulation of square roots
of negative numbers. As an example, Tartaglia's formula for a cubic equation of the form x3 = px + q[note 2]

gives the solution to the equation x3 = x as

At first glance this looks like nonsense. However, formal calculations with complex numbers show that the

equation z3 = i has solutions −i,  and . Substituting these in turn for  in Tartaglia's

cubic formula and simplifying, one gets 0, 1 and −1 as the solutions of x3 − x = 0. Of course this particular
equation can be solved at sight but it does illustrate that when general formulas are used to solve cubic
equations with real roots then, as later mathematicians showed rigorously,[22] the use of complex numbers is
unavoidable. Rafael Bombelli was the first to address explicitly these seemingly paradoxical solutions of cubic
equations and developed the rules for complex arithmetic trying to resolve these issues.

The term "imaginary" for these quantities was coined by René Descartes in 1637, although he was at pains to
stress their imaginary nature[23]

[...] sometimes only imaginary, that is one can imagine as many as I said in each equation, but
sometimes there exists no quantity that matches that which we imagine. ([...] quelquefois
seulement imaginaires c'est-à-dire que l'on peut toujours en imaginer autant que j'ai dit en chaque
équation, mais qu'il n'y a quelquefois aucune quantité qui corresponde à celle qu'on imagine.)

A further source of confusion was that the equation  seemed to be capriciously
inconsistent with the algebraic identity , which is valid for non-negative real numbers a and b,
and which was also used in complex number calculations with one of a, b positive and the other negative. The

incorrect use of this identity (and the related identity ) in the case when both a and b are negative

even bedeviled Euler. This difficulty eventually led to the convention of using the special symbol i in place of
√−1 to guard against this mistake. Even so, Euler considered it natural to introduce students to complex
numbers much earlier than we do today. In his elementary algebra text book, Elements of Algebra, he
introduces these numbers almost at once and then uses them in a natural way throughout.

In the 18th century complex numbers gained wider use, as it was noticed that formal manipulation of complex
expressions could be used to simplify calculations involving trigonometric functions. For instance, in 1730
Abraham de Moivre noted that the complicated identities relating trigonometric functions of an integer multiple
of an angle to powers of trigonometric functions of that angle could be simply re-expressed by the following
well-known formula which bears his name, de Moivre's formula:
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In 1748 Leonhard Euler went further and obtained Euler's formula of complex analysis:[24]

by formally manipulating complex power series and observed that this formula could be used to reduce any
trigonometric identity to much simpler exponential identities.

The idea of a complex number as a point in the complex plane (above) was first described by Caspar Wessel in
1799,[25] although it had been anticipated as early as 1685 in Wallis's A Treatise of Algebra.[26]

Wessel's memoir appeared in the Proceedings of the Copenhagen Academy but went largely unnoticed. In
1806 Jean-Robert Argand independently issued a pamphlet on complex numbers and provided a rigorous
proof of the fundamental theorem of algebra.[27] Carl Friedrich Gauss had earlier published an essentially
topological proof of the theorem in 1797 but expressed his doubts at the time about "the true metaphysics of
the square root of −1".[28] It was not until 1831 that he overcame these doubts and published his treatise on
complex numbers as points in the plane,[29][30] largely establishing modern notation and terminology.

If one formerly contemplated this subject from a false point of view and therefore found a
mysterious darkness, this is in large part attributable to clumsy terminology. Had one not called
+1, −1, √−1 positive, negative, or imaginary (or even impossible) units, but instead, say, direct,
inverse, or lateral units, then there could scarcely have been talk of such darkness. - Gauss[29][30]

In the beginning of the 19th century, other mathematicians discovered independently the geometrical
representation of the complex numbers: Buée,[31][32] Mourey,[33] Warren,[34] Français and his brother,
Bellavitis.[35][36]

The English mathematician G.H. Hardy remarked that Gauss was the first mathematician to use complex
numbers in 'a really confident and scientific way' although mathematicians such as Niels Henrik Abel and Carl
Gustav Jacob Jacobi were necessarily using them routinely before Gauss published his 1831 treatise.[37]

Augustin Louis Cauchy and Bernhard Riemann together brought the fundamental ideas of complex analysis to
a high state of completion, commencing around 1825 in Cauchy's case.

The common terms used in the theory are chiefly due to the founders. Argand called cos φ + i sin φ the
direction factor, and  the modulus;[38][39] Cauchy (1821) called cos φ + i sin φ the reduced
form (l'expression réduite)[40] and apparently introduced the term argument; Gauss used i for ,[41]

introduced the term complex number for a + bi,[42] and called a2 + b2 the norm.[43] The expression
direction coefficient, often used for cos φ + i sin φ, is due to Hankel (1867),[44] and absolute value, for
modulus, is due to Weierstrass.

Later classical writers on the general theory include Richard Dedekind, Otto Hölder, Felix Klein, Henri
Poincaré, Hermann Schwarz, Karl Weierstrass and many others.
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Geometric representation of z
and its conjugate z in the
complex plane

Complex numbers have a similar definition of equality to real numbers; two complex numbers  and 
 are equal if and only if both their real and imaginary parts are equal, that is, if  and .

Nonzero complex numbers written in polar form are equal if and only if they have the same magnitude and
their arguments differ by an integer multiple of 2π.

Unlike the real numbers, there is no natural ordering of the complex numbers. In particular, there is no linear
ordering on the complex numbers that is compatible with addition and multiplication – the complex numbers
cannot have the structure of an ordered field. This is e.g. because every non-trivial sum of squares in an
ordered field is ≠ 0, and i2 + 12 = 0 is a non-trivial sum of squares. Thus, complex numbers are naturally
thought of as existing on a two-dimensional plane.

The complex conjugate of the complex number z = x + yi is given by
x − yi. It is denoted by either z or z*.[45] This unary operation on complex
numbers cannot be expressed by applying only their basic operations
addition, subtraction, multiplication and division.

Geometrically, z is the "reflection" of z about the real axis. Conjugating
twice gives the original complex number

which makes this operation an involution. The reflection leaves both the real
part and the magnitude of z unchanged, that is

 and 

The imaginary part and the argument of a complex number z change their
sign under conjugation

 and 

For details on argument and magnitude, see the section on Polar form.

The product of a complex number z = x + yi and its conjugate is known as the absolute square. It is always a
positive real number and equals the square of the magnitude of each:

This property can be used to convert a fraction with a complex denominator to an equivalent fraction with a
real denominator by expanding both numerator and denominator of the fraction by the conjugate of the given
denominator. This process is sometimes called "rationalization" of the denominator (although the denominator
in the final expression might be an irrational real number), because it resembles the method to remove roots
from simple expressions in a denominator.

The real and imaginary parts of a complex number z can be extracted using the conjugation:

Ordering

Conjugate
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Addition of two complex numbers
can be done geometrically by
constructing a parallelogram.

 and 

Moreover, a complex number is real if and only if it equals its own conjugate.

Conjugation distributes over the basic complex arithmetic operations:

Conjugation is also employed in inversive geometry, a branch of geometry studying reflections more general
than ones about a line. In the network analysis of electrical circuits, the complex conjugate is used in finding
the equivalent impedance when the maximum power transfer theorem is looked for.

Two complex numbers a and b are most easily added by separately
adding their real and imaginary parts of the summands. That is to say:

Similarly, subtraction can be performed as

Using the visualization of complex numbers in the complex plane, the
addition has the following geometric interpretation: the sum of two
complex numbers a and b, interpreted as points in the complex plane,
is the point obtained by building a parallelogram from the three
vertices O, and the points of the arrows labeled a and b (provided
that they are not on a line). Equivalently, calling these points A, B,
respectively and the fourth point of the parallelogram X the triangles
OAB and XBA are congruent. A visualization of the subtraction can
be achieved by considering addition of the negative subtrahend.

Since the real part, the imaginary part, and the indeterminate i in a complex number are all considered as
numbers in themselves, two complex numbers, given as z = x + yi and w = u + vi are multiplied under the
rules of the distributive property, the commutative properties and the defining property i2 = -1 in the
following way

Addition and subtraction

Multiplication
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Multiplication of 2 + i (blue triangle)
and 3 + i (red triangle). The red
triangle is rotated to match the
vertex of the blue one and stretched
by √5, the length of the hypotenuse
of the blue triangle.

Using the conjugation, the reciprocal of a nonzero complex number z = x + yi can always be broken down to

since non-zero implies that  is greater than zero.

This can be used to express a division of an arbitrary complex number w = u + vi by a non-zero complex
number z as

Formulas for multiplication, division and exponentiation are simpler in
polar form than the corresponding formulas in Cartesian coordinates.
Given two complex numbers z1 = r1(cos φ1 + i sin φ1) and
z2 = r2(cos φ2 + i sin φ2), because of the trigonometric identities

we may derive

In other words, the absolute values are multiplied and the arguments
are added to yield the polar form of the product. For example,
multiplying by i corresponds to a quarter-turn counter-clockwise,
which gives back i2 = −1. The picture at the right illustrates the
multiplication of

Since the real and imaginary part of 5 + 5i are equal, the argument of that number is 45 degrees, or π/4 (in
radian). On the other hand, it is also the sum of the angles at the origin of the red and blue triangles are
arctan(1/3) and arctan(1/2), respectively. Thus, the formula

Reciprocal and division

Multiplication and division in polar form
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holds. As the arctan function can be approximated highly efficiently, formulas like this – known as Machin-
like formulas – are used for high-precision approximations of π.

Similarly, division is given by

The square roots of a + bi (with b ≠ 0) are , where

and

where sgn is the signum function. This can be seen by squaring  to obtain a + bi.[46][47] Here 

 is called the modulus of a + bi, and the square root sign indicates the square root with non-

negative real part, called the principal square root; also  where z = a + bi.[48]

The exponential function  can be defined for every complex number z by the power
series

which has an infinite radius of convergence.

The value at 1 of the exponential function is Euler's number

If z is real, one has  Analytic continuation allows extending this equality for every complex value
of z, and thus to define the complex exponentiation with base e as

Square root

Exponential function
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The exponential function satisfies the functional equation  This can be proved either by
comparing the power series expansion of both members or by applying analytic continuation from the
restriction of the equation to real arguments.

Euler's formula states that, for any real number y,

The functional equation implies thus that, if x and y are real, one has

which is the decomposition of the exponential function into its real and imaginary parts.

In the real case, the natural logarithm can be defined as the inverse  of the exponential
function. For extending this to the complex domain, one can start from Euler's formula. It implies that, if a
complex number  is written in polar form

with  then with

as complex logarithm one has a proper inverse:

However, because cosine and sine are periodic functions, the addition of an integer multiple of 2π to φ does
not change z. For example, , so both iπ and 3iπ are possible values for the natural logarithm
of −1.

Therefore, if the complex logarithm is not to be defined as a multivalued function

one has to use a branch cut and to restrict the codomain, resulting in the bijective function

If  is not a non-positive real number (a positive or a non-real number), the resulting principal
value of the complex logarithm is obtained with  It is an analytic function outside the negative
real numbers, but it cannot be prolongated to a function that is continuous at any negative real number 

, where the principal value is [note 3]

Functional equation

Euler's formula

Complex logarithm
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Geometric representation of the 2nd to 6th roots of

a complex number z, in polar form reiφ  where
r = |z | and φ = arg z. If z is real, φ = 0 or π.
Principal roots are shown in black.

If x > 0 is real and z complex, the exponentiation is defined as

where ln denotes the natural logarithm.

It seems natural to extend this formula to complex values of x, but there are some difficulties resulting from the
fact that the complex logarithm is not really a function, but a multivalued function.

It follows that if z is as above, and if t is another complex number, then the exponentiation is the multivalued
function

If, in the preceding formula, t is an integer, then the sine
and the cosine are independent of k. Thus, if the
exponent n is an integer, then zn is well defined, and the
exponentiation formula simplifies to de Moivre's formula:

The n nth roots of a complex number z are given by

Exponentiation

Integer and fractional exponents
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for 0 ≤ k ≤ n − 1. (Here  is the usual (positive) nth root of the positive real number r.) Because sine and
cosine are periodic, other integer values of k do not give other values.

While the nth root of a positive real number r is chosen to be the positive real number c satisfying cn = r,
there is no natural way of distinguishing one particular complex nth root of a complex number. Therefore, the
nth root is a n-valued function of z. This implies that, contrary to the case of positive real numbers, one has

since the left-hand side consists of n values, and the right-hand side is a single value.

The set C of complex numbers is a field.[49] Briefly, this means that the following facts hold: first, any two
complex numbers can be added and multiplied to yield another complex number. Second, for any complex
number z, its additive inverse −z is also a complex number; and third, every nonzero complex number has a
reciprocal complex number. Moreover, these operations satisfy a number of laws, for example the law of
commutativity of addition and multiplication for any two complex numbers z1 and z2:

These two laws and the other requirements on a field can be proven by the formulas given above, using the
fact that the real numbers themselves form a field.

Unlike the reals, C is not an ordered field, that is to say, it is not possible to define a relation z1 < z2 that is
compatible with the addition and multiplication. In fact, in any ordered field, the square of any element is
necessarily positive, so i2 = −1 precludes the existence of an ordering on C.[50]

When the underlying field for a mathematical topic or construct is the field of complex numbers, the topic's
name is usually modified to reflect that fact. For example: complex analysis, complex matrix, complex
polynomial, and complex Lie algebra.

Given any complex numbers (called coefficients) a0, ..., an, the equation

has at least one complex solution z, provided that at least one of the higher coefficients a1, ..., an is
nonzero.[51] This is the statement of the fundamental theorem of algebra, of Carl Friedrich Gauss and Jean le
Rond d'Alembert. Because of this fact, C is called an algebraically closed field. This property does not hold for
the field of rational numbers Q (the polynomial x2 − 2 does not have a rational root, since √2 is not a rational
number) nor the real numbers R (the polynomial x2 + a does not have a real root for a > 0, since the square
of x is positive for any real number x).

Properties

Field structure

Solutions of polynomial equations
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There are various proofs of this theorem, by either analytic methods such as Liouville's theorem, or topological
ones such as the winding number, or a proof combining Galois theory and the fact that any real polynomial of
odd degree has at least one real root.

Because of this fact, theorems that hold for any algebraically closed field apply to C. For example, any non-
empty complex square matrix has at least one (complex) eigenvalue.

The field C has the following three properties: first, it has characteristic 0. This means that
1 + 1 + ⋯ + 1 ≠ 0 for any number of summands (all of which equal one). Second, its transcendence
degree over Q, the prime field of C, is the cardinality of the continuum. Third, it is algebraically closed (see
above). It can be shown that any field having these properties is isomorphic (as a field) to C. For example, the
algebraic closure of Qp also satisfies these three properties, so these two fields are isomorphic (as fields, but not
as topological fields).[52] Also, C is isomorphic to the field of complex Puiseux series. However, specifying an
isomorphism requires the axiom of choice. Another consequence of this algebraic characterization is that C
contains many proper subfields that are isomorphic to C.

The preceding characterization of C describes only the algebraic aspects of C. That is to say, the properties of
nearness and continuity, which matter in areas such as analysis and topology, are not dealt with. The following
description of C as a topological field (that is, a field that is equipped with a topology, which allows the notion
of convergence) does take into account the topological properties. C contains a subset P (namely the set of
positive real numbers) of nonzero elements satisfying the following three conditions:

P is closed under addition, multiplication and taking inverses.
If x and y are distinct elements of P, then either x − y or y − x is in P.
If S is any nonempty subset of P, then S + P = x + P for some x in C.

Moreover, C has a nontrivial involutive automorphism x ↦ x* (namely the complex conjugation), such that
x x* is in P for any nonzero x in C.

Any field F with these properties can be endowed with a topology by taking the sets
B(x, p) = { y | p − (y − x)(y − x)* ∈ P }  as a base, where x ranges over the field and p ranges over P.
With this topology F is isomorphic as a topological field to C.

The only connected locally compact topological fields are R and C. This gives another characterization of C
as a topological field, since C can be distinguished from R because the nonzero complex numbers are
connected, while the nonzero real numbers are not.[53]

William Rowan Hamilton introduced the approach to define the set C of complex numbers[54] as the set R2 of
ordered pairs (a, b) of real numbers, in which the following rules for addition and multiplication are
imposed:[49]

Algebraic characterization

Characterization as a topological field

Formal construction

Construction as ordered pairs
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It is then just a matter of notation to express (a, b) as a + bi.

Though this low-level construction does accurately describe the structure of the complex numbers, the
following equivalent definition reveals the algebraic nature of C more immediately. This characterization relies
on the notion of fields and polynomials. A field is a set endowed with addition, subtraction, multiplication and
division operations that behave as is familiar from, say, rational numbers. For example, the distributive law

must hold for any three elements x, y and z of a field. The set R of real numbers does form a field. A
polynomial p(X) with real coefficients is an expression of the form

where the a0, ..., an are real numbers. The usual addition and multiplication of polynomials endows the set
R[X] of all such polynomials with a ring structure. This ring is called the polynomial ring over the real
numbers.

The set of complex numbers is defined as the quotient ring R[X]/(X 2 + 1).[6] This extension field contains
two square roots of −1, namely (the cosets of) X and −X, respectively. (The cosets of) 1 and X form a basis
of R[X]/(X 2 + 1) as a real vector space, which means that each element of the extension field can be
uniquely written as a linear combination in these two elements. Equivalently, elements of the extension field
can be written as ordered pairs (a, b) of real numbers. The quotient ring is a field, because X2 + 1 is
irreducible over R, so the ideal it generates is maximal.

The formulas for addition and multiplication in the ring R[X], modulo the relation X2 = −1, correspond to
the formulas for addition and multiplication of complex numbers defined as ordered pairs. So the two
definitions of the field C are isomorphic (as fields).

Accepting that C is algebraically closed, since it is an algebraic extension of R in this approach, C is therefore
the algebraic closure of R.

Complex numbers a + bi can also be represented by 2 × 2 matrices that have the following form:

Here the entries a and b are real numbers. The sum and product of two such matrices is again of this form, and
the sum and product of complex numbers corresponds to the sum and product of such matrices, the product
being:

Construction as a quotient field

Matrix representation of complex numbers
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Color wheel graph of sin(1/z). Black
parts inside refer to numbers having
large absolute values.

The geometric description of the multiplication of complex numbers can also be expressed in terms of rotation
matrices by using this correspondence between complex numbers and such matrices. Moreover, the square of
the absolute value of a complex number expressed as a matrix is equal to the determinant of that matrix:

The conjugate z corresponds to the transpose of the matrix.

Though this representation of complex numbers with matrices is the most common, many other representations
arise from matrices other than  that square to the negative of the identity matrix. See the article on 2 × 2
real matrices for other representations of complex numbers.

The study of functions of a complex variable is known as complex
analysis and has enormous practical use in applied mathematics as
well as in other branches of mathematics. Often, the most natural
proofs for statements in real analysis or even number theory employ
techniques from complex analysis (see prime number theorem for an
example). Unlike real functions, which are commonly represented as
two-dimensional graphs, complex functions have four-dimensional
graphs and may usefully be illustrated by color-coding a three-
dimensional graph to suggest four dimensions, or by animating the
complex function's dynamic transformation of the complex plane.

The notions of convergent series and continuous functions in (real)
analysis have natural analogs in complex analysis. A sequence of
complex numbers is said to converge if and only if its real and
imaginary parts do. This is equivalent to the (ε, δ)-definition of limits, where the absolute value of real numbers
is replaced by the one of complex numbers. From a more abstract point of view, C, endowed with the metric

is a complete metric space, which notably includes the triangle inequality

for any two complex numbers z1 and z2.

Like in real analysis, this notion of convergence is used to construct a number of elementary functions: the
exponential function exp z, also written ez, is defined as the infinite series

The series defining the real trigonometric functions sine and cosine, as well as the hyperbolic functions sinh
and cosh, also carry over to complex arguments without change. For the other trigonometric and hyperbolic
functions, such as tangent, things are slightly more complicated, as the defining series do not converge for all

Complex analysis

Complex exponential and related functions
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complex values. Therefore, one must define them either in terms of sine, cosine and exponential, or,
equivalently, by using the method of analytic continuation.

Euler's formula states:

for any real number φ, in particular

Unlike in the situation of real numbers, there is an infinitude of complex solutions z of the equation

for any complex number w ≠ 0. It can be shown that any such solution z – called complex logarithm of w –
satisfies

where arg is the argument defined above, and ln the (real) natural logarithm. As arg is a multivalued function,
unique only up to a multiple of 2π, log is also multivalued. The principal value of log is often taken by
restricting the imaginary part to the interval (−π, π].

Complex exponentiation zω is defined as

and is multi-valued, except when ω is an integer. For ω = 1 / n, for some natural number n, this recovers the
non-uniqueness of nth roots mentioned above.

Complex numbers, unlike real numbers, do not in general satisfy the unmodified power and logarithm
identities, particularly when naïvely treated as single-valued functions; see failure of power and logarithm
identities. For example, they do not satisfy

Both sides of the equation are multivalued by the definition of complex exponentiation given here, and the
values on the left are a subset of those on the right.

A function f : C → C is called holomorphic if it satisfies the Cauchy–Riemann equations. For example, any R-
linear map C → C can be written in the form

with complex coefficients a and b. This map is holomorphic if and only if b = 0. The second summand  is
real-differentiable, but does not satisfy the Cauchy–Riemann equations.

Complex analysis shows some features not apparent in real analysis. For example, any two holomorphic
functions f and g that agree on an arbitrarily small open subset of C necessarily agree everywhere.
Meromorphic functions, functions that can locally be written as f(z)/(z − z0)n with a holomorphic function f,

Holomorphic functions
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The Mandelbrot set with the real and
imaginary axes labeled.

still share some of the features of holomorphic functions. Other functions have essential singularities, such as
sin(1/z) at z = 0.

Complex numbers have applications in many scientific areas, including signal processing, control theory,
electromagnetism, fluid dynamics, quantum mechanics, cartography, and vibration analysis. Some of these
applications are described below.

Three non-collinear points  in the plane determine the shape of the triangle . Locating the
points in the complex plane, this shape of a triangle may be expressed by complex arithmetic as

The shape  of a triangle will remain the same, when the complex plane is transformed by translation or
dilation (by an affine transformation), corresponding to the intuitive notion of shape, and describing similarity.
Thus each triangle  is in a similarity class of triangles with the same shape.[55]

The Mandelbrot set is a popular example of a fractal formed on the
complex plane. It is defined by plotting every location  where
iterating the sequence  does not diverge when iterated
infinitely. Similarly, Julia sets have the same rules, except where 
remains constant.

Every triangle has a unique Steiner inellipse – an ellipse inside the
triangle and tangent to the midpoints of the three sides of the triangle.
The foci of a triangle's Steiner inellipse can be found as follows,
according to Marden's theorem:[56][57] Denote the triangle's vertices
in the complex plane as a = xA + yAi, b = xB + yBi, and c = xC + yCi. Write the cubic equation 

, take its derivative, and equate the (quadratic) derivative to zero. Marden's Theorem says that
the solutions of this equation are the complex numbers denoting the locations of the two foci of the Steiner
inellipse.

As mentioned above, any nonconstant polynomial equation (in complex coefficients) has a solution in C. A
fortiori, the same is true if the equation has rational coefficients. The roots of such equations are called
algebraic numbers – they are a principal object of study in algebraic number theory. Compared to Q, the
algebraic closure of Q, which also contains all algebraic numbers, C has the advantage of being easily

Applications

Geometry

Shapes

Fractal geometry

Triangles

Algebraic number theory

https://en.wikipedia.org/wiki/File:Mandelset_hires.png
https://en.wikipedia.org/wiki/Essential_singularity
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Cartography
https://en.wikipedia.org/wiki/Vibration#Vibration_analysis
https://en.wikipedia.org/wiki/Collinearity
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Similarity_(geometry)
https://en.wikipedia.org/wiki/Shape#Similarity_classes
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Diverge_(stability_theory)
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Steiner_inellipse
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Focus_(geometry)
https://en.wikipedia.org/wiki/Marden%27s_theorem
https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Marden%27s_Theorem
https://en.wikipedia.org/wiki/Algebraic_number
https://en.wikipedia.org/wiki/Algebraic_number_theory


Construction of a regular
pentagon using straightedge
and compass.

understandable in geometric terms. In this way, algebraic methods can be
used to study geometric questions and vice versa. With algebraic methods,
more specifically applying the machinery of field theory to the number field
containing roots of unity, it can be shown that it is not possible to construct a
regular nonagon using only compass and straightedge – a purely geometric
problem.

Another example are Gaussian integers, that is, numbers of the form x + iy,
where x and y are integers, which can be used to classify sums of squares.

Analytic number theory studies numbers, often integers or rationals, by
taking advantage of the fact that they can be regarded as complex numbers,
in which analytic methods can be used. This is done by encoding number-
theoretic information in complex-valued functions. For example, the Riemann zeta function ζ(s) is related to
the distribution of prime numbers.

In applied fields, complex numbers are often used to compute certain real-valued improper integrals, by means
of complex-valued functions. Several methods exist to do this; see methods of contour integration.

In differential equations, it is common to first find all complex roots r of the characteristic equation of a linear
differential equation or equation system and then attempt to solve the system in terms of base functions of the
form f(t) = ert. Likewise, in difference equations, the complex roots r of the characteristic equation of the
difference equation system are used, to attempt to solve the system in terms of base functions of the form
f(t) = rt.

In control theory, systems are often transformed from the time domain to the frequency domain using the
Laplace transform. The system's zeros and poles are then analyzed in the complex plane. The root locus,
Nyquist plot, and Nichols plot techniques all make use of the complex plane.

In the root locus method, it is important whether zeros and poles are in the left or right half planes, that is, have
real part greater than or less than zero. If a linear, time-invariant (LTI) system has poles that are

in the right half plane, it will be unstable,
all in the left half plane, it will be stable,
on the imaginary axis, it will have marginal stability.

If a system has zeros in the right half plane, it is a nonminimum phase system.

Analytic number theory

Improper integrals

Dynamic equations

In applied mathematics

Control theory
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Complex numbers are used in signal analysis and other fields for a convenient description for periodically
varying signals. For given real functions representing actual physical quantities, often in terms of sines and
cosines, corresponding complex functions are considered of which the real parts are the original quantities. For
a sine wave of a given frequency, the absolute value |z| of the corresponding z is the amplitude and the
argument arg z is the phase.

If Fourier analysis is employed to write a given real-valued signal as a sum of periodic functions, these periodic
functions are often written as complex valued functions of the form

and

where ω represents the angular frequency and the complex number A encodes the phase and amplitude as
explained above.

This use is also extended into digital signal processing and digital image processing, which utilize digital
versions of Fourier analysis (and wavelet analysis) to transmit, compress, restore, and otherwise process digital
audio signals, still images, and video signals.

Another example, relevant to the two side bands of amplitude modulation of AM radio, is:

In electrical engineering, the Fourier transform is used to analyze varying voltages and currents. The treatment
of resistors, capacitors, and inductors can then be unified by introducing imaginary, frequency-dependent
resistances for the latter two and combining all three in a single complex number called the impedance. This
approach is called phasor calculus.

In electrical engineering, the imaginary unit is denoted by j, to avoid confusion with I, which is generally in
use to denote electric current, or, more particularly, i, which is generally in use to denote instantaneous electric
current.

Since the voltage in an AC circuit is oscillating, it can be represented as

To obtain the measurable quantity, the real part is taken:

Signal analysis

In physics

Electromagnetism and electrical engineering
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Cayley Q8 quaternion graph showing
cycles of multiplication by i, j and k

The complex-valued signal  is called the analytic representation of the real-valued, measurable signal 
. [58]

In fluid dynamics, complex functions are used to describe potential flow in two dimensions.

The complex number field is intrinsic to the mathematical formulations of quantum mechanics, where complex
Hilbert spaces provide the context for one such formulation that is convenient and perhaps most standard. The
original foundation formulas of quantum mechanics – the Schrödinger equation and Heisenberg's matrix
mechanics – make use of complex numbers.

In special and general relativity, some formulas for the metric on spacetime become simpler if one takes the
time component of the spacetime continuum to be imaginary. (This approach is no longer standard in classical
relativity, but is used in an essential way in quantum field theory.) Complex numbers are essential to spinors,
which are a generalization of the tensors used in relativity.

The process of extending the field R of reals to C is known as the
Cayley–Dickson construction. It can be carried further to higher
dimensions, yielding the quaternions H and octonions O which (as a
real vector space) are of dimension 4 and 8, respectively. In this
context the complex numbers have been called the binarions.[59]

Just as by applying the construction to reals the property of ordering
is lost, properties familiar from real and complex numbers vanish
with each extension. The quaternions lose commutativity, that is,
x·y ≠ y·x for some quaternions x, y, and the multiplication of
octonions, additionally to not being commutative, fails to be
associative: (x·y)·z ≠ x·(y·z) for some octonions x, y, z.

Reals, complex numbers, quaternions and octonions are all normed
division algebras over R. By Hurwitz's theorem they are the only
ones; the sedenions, the next step in the Cayley–Dickson
construction, fail to have this structure.

The Cayley–Dickson construction is closely related to the regular representation of C, thought of as an R-
algebra (an R-vector space with a multiplication), with respect to the basis (1, i). This means the following:
the R-linear map

Fluid dynamics

Quantum mechanics

Relativity

Generalizations and related notions
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for some fixed complex number w can be represented by a 2 × 2 matrix (once a basis has been chosen). With
respect to the basis (1, i), this matrix is

that is, the one mentioned in the section on matrix representation of complex numbers above. While this is a
linear representation of C in the 2 × 2 real matrices, it is not the only one. Any matrix

has the property that its square is the negative of the identity matrix: J2 = −I. Then

is also isomorphic to the field C, and gives an alternative complex structure on R2. This is generalized by the
notion of a linear complex structure.

Hypercomplex numbers also generalize R, C, H, and O. For example, this notion contains the split-complex
numbers, which are elements of the ring R[x]/(x2 − 1) (as opposed to R[x]/(x2 + 1)). In this ring, the
equation a2 = 1 has four solutions.

The field R is the completion of Q, the field of rational numbers, with respect to the usual absolute value
metric. Other choices of metrics on Q lead to the fields Qp of p-adic numbers (for any prime number p), which
are thereby analogous to R. There are no other nontrivial ways of completing Q than R and Qp, by
Ostrowski's theorem. The algebraic closures  of Qp still carry a norm, but (unlike C) are not complete with

respect to it. The completion  of  turns out to be algebraically closed. This field is called p-adic complex
numbers by analogy.

The fields R and Qp and their finite field extensions, including C, are local fields.

Algebraic surface
Circular motion using complex numbers
Complex-base system
Complex geometry
Dual-complex number
Eisenstein integer
Euler's identity
Geometric algebra (which includes the complex plane as the 2-dimensional spinor subspace 

)
Root of unity
Unit complex number

See also
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1. For an extensive account of the history, from initial skepticism to ultimate acceptance, See
(Bourbaki 1998), pages 18-24.

2. In modern notation, Tartaglia's solution is based on expanding the cube of the sum of two cube
roots:  With , , , u

and v can be expressed in terms of p and q as  and 

, respectively. Therefore, 

. When  is

negative (casus irreducibilis), the second cube root should be regarded as the complex
conjugate of the first one.

3. However for another inverse function of the complex exponential function (and not the above
defined principal value), the branch cut could be taken at any other ray thru the origin.
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