
A symbol for the
set of real numbers

Real numbers can be thought of as points on an infinitely
long number line

Real number
In mathematics, a real number is a value of a continuous quantity that can represent a
distance along a line (or alternatively, a quantity that can be represented as an infinite
decimal expansion). The adjective real in this context was introduced in the 17th
century by René Descartes, who distinguished between real and imaginary roots of
polynomials. The real numbers include all the rational numbers, such as the integer −5
and the fraction 4/3, and all the irrational numbers, such as √2 (1.41421356..., the
square root of 2, an irrational algebraic number). Included within the irrationals are the
transcendental numbers, such as π (3.14159265...).[1] In addition to measuring
distance, real numbers can be used to measure quantities such as time, mass, energy,
velocity, and many more. The set of real numbers is denoted using the symbol R or 
.[2][3]

Real numbers can be thought of as points on an infinitely long line called the number line or real line, where
the points corresponding to integers are equally spaced. Any real number can be determined by a possibly
infinite decimal representation, such as that of 8.632, where each consecutive digit is measured in units one
tenth the size of the previous one. The real line can be thought of as a part of the complex plane, and the real
numbers can be thought of as a part of the complex numbers.

These descriptions of the real numbers are not
sufficiently rigorous by the modern standards of
pure mathematics. The discovery of a suitably
rigorous definition of the real numbers—indeed,
the realization that a better definition was needed
—was one of the most important developments
of 19th-century mathematics. The current
standard axiomatic definition is that real numbers
form the unique Dedekind-complete ordered field
(R ; + ; · ; <), up to an isomorphism,[a] whereas
popular constructive definitions of real numbers
include declaring them as equivalence classes of Cauchy sequences (of rational numbers), Dedekind cuts, or
infinite decimal representations, together with precise interpretations for the arithmetic operations and the order
relation. All these definitions satisfy the axiomatic definition and are thus equivalent.

The set of all real numbers is uncountable, in the sense that while both the set of all natural numbers and the set
of all real numbers are infinite sets, there can be no one-to-one function from the real numbers to the natural
numbers. In fact, the cardinality of the set of all real numbers, denoted by  and called the cardinality of the
continuum,[2] is strictly greater than the cardinality of the set of all natural numbers (denoted , 'aleph-
naught'[2]).

The statement that there is no subset of the reals with cardinality strictly greater than  and strictly smaller
than  is known as the continuum hypothesis (CH). It is known to be neither provable nor refutable using the
axioms of Zermelo–Fraenkel set theory including the axiom of choice (ZFC)—the standard foundation of
modern mathematics. In fact, some models of ZFC satisfy CH, while others violate it.
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Real numbers (ℝ) include the rational
numbers (ℚ), which include the
integers (ℤ), which in turn include the
natural numbers (ℕ)
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Simple fractions were used by the Egyptians around 1000 BC; the
Vedic "Shulba Sutras" ("The rules of chords") in, c. 600 BC, include
what may be the first "use" of irrational numbers. The concept of
irrationality was implicitly accepted by early Indian mathematicians
such as Manava (c. 750–690 BC), who were aware that the square
roots of certain numbers, such as 2 and 61, could not be exactly
determined.[4] Around 500 BC, the Greek mathematicians led by
Pythagoras realized the need for irrational numbers, in particular the
irrationality of the square root of 2.

The Middle Ages brought about the acceptance of zero, negative
numbers, integers, and fractional numbers, first by Indian and Chinese
mathematicians, and then by Arabic mathematicians, who were also
the first to treat irrational numbers as algebraic objects (the latter being made possible by the development of
algebra).[5] Arabic mathematicians merged the concepts of "number" and "magnitude" into a more general
idea of real numbers.[6] The Egyptian mathematician Abū Kāmil Shujā ibn Aslam (c. 850–930) was the first to
accept irrational numbers as solutions to quadratic equations, or as coefficients in an equation (often in the
form of square roots, cube roots and fourth roots).[7]

In the 16th century, Simon Stevin created the basis for modern decimal notation, and insisted that there is no
difference between rational and irrational numbers in this regard.
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In the 17th century, Descartes introduced the term "real" to describe roots of a polynomial, distinguishing them
from "imaginary" ones.

In the 18th and 19th centuries, there was much work on irrational and transcendental numbers. Johann
Heinrich Lambert (1761) gave the first flawed proof that π cannot be rational; Adrien-Marie Legendre (1794)
completed the proof,[8] and showed that π is not the square root of a rational number.[9] Paolo Ruffini (1799)
and Niels Henrik Abel (1842) both constructed proofs of the Abel–Ruffini theorem: that the general quintic or
higher equations cannot be solved by a general formula involving only arithmetical operations and roots.

Évariste Galois (1832) developed techniques for determining whether a given equation could be solved by
radicals, which gave rise to the field of Galois theory. Joseph Liouville (1840) showed that neither e nor e2 can
be a root of an integer quadratic equation, and then established the existence of transcendental numbers; Georg
Cantor (1873) extended and greatly simplified this proof.[10] Charles Hermite (1873) first proved that e is
transcendental, and Ferdinand von Lindemann (1882), showed that π is transcendental. Lindemann's proof
was much simplified by Weierstrass (1885), still further by David Hilbert (1893), and has finally been made
elementary by Adolf Hurwitz[11] and Paul Gordan.[12]

The development of calculus in the 18th century used the entire set of real numbers without having defined
them rigorously. The first rigorous definition was published by Georg Cantor in 1871. In 1874, he showed that
the set of all real numbers is uncountably infinite, but the set of all algebraic numbers is countably infinite.
Contrary to widely held beliefs, his first method was not his famous diagonal argument, which he published in
1891. For more, see Cantor's first uncountability proof.

The real number system  can be defined axiomatically up to an isomorphism, which is
described hereafter. There are also many ways to construct "the" real number system, and a popular approach
involves starting from natural numbers, then defining rational numbers algebraically, and finally defining real
numbers as equivalence classes of their Cauchy sequences or as Dedekind cuts, which are certain subsets of
rational numbers. Another approach is to start from some rigorous axiomatization of Euclidean geometry (say
of Hilbert or of Tarski), and then define the real number system geometrically. All these constructions of the
real numbers have been shown to be equivalent, in the sense that the resulting number systems are isomorphic.

Let R denote the set of all real numbers, then:

The set R is a field, meaning that addition and multiplication are defined and have the usual
properties.
The field R is ordered, meaning that there is a total order ≥ such that for all real numbers x, y
and z:

if x ≥ y, then x + z ≥ y + z;
if x ≥ 0 and y ≥ 0, then xy ≥ 0.

The order is Dedekind-complete, meaning that every non-empty subset S of R with an upper
bound in R has a least upper bound (a.k.a., supremum) in R.

The last property is what differentiates the reals from the rationals (and from other more exotic ordered fields).
For example, the set of rationals with square less than 2 has rational upper bounds (e.g., 1.42), but no rational
least upper bound, because the square root of 2 is not rational.
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These properties imply the Archimedean property (which is not implied by other definitions of completeness),
which states that the set of integers is not upper-bounded in the reals. In fact, if this were false, then the
integers would have a least upper bound N; then, N – 1 would not be an upper bound, and there would be an
integer n such that n > N – 1, and thus n + 1 > N, which is a contradiction with the upper-bound property of N.

The real numbers are uniquely specified by the above properties. More precisely, given any two Dedekind-
complete ordered fields R1 and R2, there exists a unique field isomorphism from R1 to R2. This uniqueness
allows us to think of them as essentially the same mathematical object.

For another axiomatization of ℝ, see Tarski's axiomatization of the reals.

The real numbers can be constructed as a completion of the rational numbers, in such a way that a sequence
defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) converges to a unique real
number—in this case π. For details and other constructions of real numbers, see construction of the real
numbers.

Any non-zero real number is either negative or positive.
The sum and the product of two non-negative real numbers is again a non-negative real
number, i.e., they are closed under these operations, and form a positive cone, thereby giving
rise to a linear order of the real numbers along a number line.
The real numbers make up an infinite set of numbers that cannot be injectively mapped to the
infinite set of natural numbers, i.e., there are uncountably infinitely many real numbers, whereas
the natural numbers are called countably infinite. This establishes that in some sense, there are
more real numbers than there are elements in any countable set.
There is a hierarchy of countably infinite subsets of the real numbers, e.g., the integers, the
rationals, the algebraic numbers and the computable numbers, each set being a proper subset
of the next in the sequence. The complements of all these sets (irrational, transcendental, and
non-computable real numbers) with respect to the reals, are all uncountably infinite sets.
Real numbers can be used to express measurements of continuous quantities. They may be
expressed by decimal representations, most of them having an infinite sequence of digits to the
right of the decimal point; these are often represented like 324.823122147..., where the ellipsis
(three dots) indicates that there would still be more digits to come. This hints to the fact that we
can precisely denote only a few, selected real numbers with finitely many symbols.

More formally, the real numbers have the two basic properties of being an ordered field, and having the least
upper bound property. The first says that real numbers comprise a field, with addition and multiplication as
well as division by non-zero numbers, which can be totally ordered on a number line in a way compatible with
addition and multiplication. The second says that, if a non-empty set of real numbers has an upper bound, then
it has a real least upper bound. The second condition distinguishes the real numbers from the rational numbers:
for example, the set of rational numbers whose square is less than 2 is a set with an upper bound (e.g. 1.5) but
no (rational) least upper bound: hence the rational numbers do not satisfy the least upper bound property.

Construction from the rational numbers
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A main reason for using real numbers is that the reals contain all limits. More precisely, a sequence of real
numbers has a limit, which is a real number, if (and only if) its elements eventually come and remain arbitrarily
close to each other. This is formally defined in the following, and means that the reals are complete (in the
sense of metric spaces or uniform spaces, which is a different sense than the Dedekind completeness of the
order in the previous section). :

A sequence (xn) of real numbers is called a Cauchy sequence if for any ε > 0 there exists an integer N
(possibly depending on ε) such that the distance |xn − xm| is less than ε for all n and m that are both greater than
N. This definition, originally provided by Cauchy, formalizes the fact that the xn eventually come and remain
arbitrarily close to each other.

A sequence (xn) converges to the limit x if its elements eventually come and remain arbitrarily close to x, that
is, if for any ε > 0 there exists an integer N (possibly depending on ε) such that the distance |xn − x| is less than
ε for n greater than N.

Every convergent sequence is a Cauchy sequence, and the converse is true for real numbers, and this means
that the topological space of the real numbers is complete.

The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421;
...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it
does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root
of 2).

The completeness property of the reals is the basis on which calculus, and, more generally mathematical
analysis are built. In particular, the test that a sequence is a Cauchy sequence allows proving that a sequence
has a limit, without computing it, and even without knowing it.

For example, the standard series of the exponential function

converges to a real number for every x, because the sums

can be made arbitrarily small (independently of M) by choosing N sufficiently large. This proves that the
sequence is Cauchy, and thus converges, showing that  is well defined for every x.

The real numbers are often described as "the complete ordered field", a phrase that can be interpreted in
several ways.

First, an order can be lattice-complete. It is easy to see that no ordered field can be lattice-complete, because it
can have no largest element (given any element z, z + 1 is larger), so this is not the sense that is meant.

Additionally, an order can be Dedekind-complete, as defined in the section Axioms. The uniqueness result at
the end of that section justifies using the word "the" in the phrase "complete ordered field" when this is the
sense of "complete" that is meant. This sense of completeness is most closely related to the construction of the

"The complete ordered field"
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reals from Dedekind cuts, since that construction starts from an ordered field (the rationals) and then forms the
Dedekind-completion of it in a standard way.

These two notions of completeness ignore the field structure. However, an ordered group (in this case, the
additive group of the field) defines a uniform structure, and uniform structures have a notion of completeness;
the description in the previous section Completeness is a special case. (We refer to the notion of completeness
in uniform spaces rather than the related and better known notion for metric spaces, since the definition of
metric space relies on already having a characterization of the real numbers.) It is not true that R is the only
uniformly complete ordered field, but it is the only uniformly complete Archimedean field, and indeed one
often hears the phrase "complete Archimedean field" instead of "complete ordered field". Every uniformly
complete Archimedean field must also be Dedekind-complete (and vice versa), justifying using "the" in the
phrase "the complete Archimedean field". This sense of completeness is most closely related to the
construction of the reals from Cauchy sequences (the construction carried out in full in this article), since it
starts with an Archimedean field (the rationals) and forms the uniform completion of it in a standard way.

But the original use of the phrase "complete Archimedean field" was by David Hilbert, who meant still
something else by it. He meant that the real numbers form the largest Archimedean field in the sense that every
other Archimedean field is a subfield of R. Thus R is "complete" in the sense that nothing further can be
added to it without making it no longer an Archimedean field. This sense of completeness is most closely
related to the construction of the reals from surreal numbers, since that construction starts with a proper class
that contains every ordered field (the surreals) and then selects from it the largest Archimedean subfield.

The reals are uncountable; that is: there are strictly more real numbers than natural numbers, even though both
sets are infinite. In fact, the cardinality of the reals equals that of the set of subsets (i.e. the power set) of the
natural numbers, and Cantor's diagonal argument states that the latter set's cardinality is strictly greater than the
cardinality of N. Since the set of algebraic numbers is countable, almost all real numbers are transcendental.
The non-existence of a subset of the reals with cardinality strictly between that of the integers and the reals is
known as the continuum hypothesis. The continuum hypothesis can neither be proved nor be disproved; it is
independent from the axioms of set theory.

As a topological space, the real numbers are separable. This is because the set of rationals, which is countable,
is dense in the real numbers. The irrational numbers are also dense in the real numbers, however they are
uncountable and have the same cardinality as the reals.

The real numbers form a metric space: the distance between x and y is defined as the absolute value |x − y|. By
virtue of being a totally ordered set, they also carry an order topology; the topology arising from the metric and
the one arising from the order are identical, but yield different presentations for the topology—in the order
topology as ordered intervals, in the metric topology as epsilon-balls. The Dedekind cuts construction uses the
order topology presentation, while the Cauchy sequences construction uses the metric topology presentation.
The reals are a contractible (hence connected and simply connected), separable and complete metric space of
Hausdorff dimension 1. The real numbers are locally compact but not compact. There are various properties
that uniquely specify them; for instance, all unbounded, connected, and separable order topologies are
necessarily homeomorphic to the reals.

Every nonnegative real number has a square root in R, although no negative number does. This shows that the
order on R is determined by its algebraic structure. Also, every polynomial of odd degree admits at least one
real root: these two properties make R the premier example of a real closed field. Proving this is the first half of
one proof of the fundamental theorem of algebra.

Advanced properties
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The reals carry a canonical measure, the Lebesgue measure, which is the Haar measure on their structure as a
topological group normalized such that the unit interval [0;1] has measure 1. There exist sets of real numbers
that are not Lebesgue measurable, e.g. Vitali sets.

The supremum axiom of the reals refers to subsets of the reals and is therefore a second-order logical
statement. It is not possible to characterize the reals with first-order logic alone: the Löwenheim–Skolem
theorem implies that there exists a countable dense subset of the real numbers satisfying exactly the same
sentences in first-order logic as the real numbers themselves. The set of hyperreal numbers satisfies the same
first order sentences as R. Ordered fields that satisfy the same first-order sentences as R are called nonstandard
models of R. This is what makes nonstandard analysis work; by proving a first-order statement in some
nonstandard model (which may be easier than proving it in R), we know that the same statement must also be
true of R.

The field R of real numbers is an extension field of the field Q of rational numbers, and R can therefore be
seen as a vector space over Q. Zermelo–Fraenkel set theory with the axiom of choice guarantees the existence
of a basis of this vector space: there exists a set B of real numbers such that every real number can be written
uniquely as a finite linear combination of elements of this set, using rational coefficients only, and such that no
element of B is a rational linear combination of the others. However, this existence theorem is purely
theoretical, as such a base has never been explicitly described.

The well-ordering theorem implies that the real numbers can be well-ordered if the axiom of choice is
assumed: there exists a total order on R with the property that every non-empty subset of R has a least element
in this ordering. (The standard ordering ≤ of the real numbers is not a well-ordering since e.g. an open interval
does not contain a least element in this ordering.) Again, the existence of such a well-ordering is purely
theoretical, as it has not been explicitly described. If V=L is assumed in addition to the axioms of ZF, a well
ordering of the real numbers can be shown to be explicitly definable by a formula.[13]

A real number may be either computable or uncomputable; either algorithmically random or not; and either
arithmetically random or not.

The real numbers are most often formalized using the Zermelo–Fraenkel axiomatization of set theory, but some
mathematicians study the real numbers with other logical foundations of mathematics. In particular, the real
numbers are also studied in reverse mathematics and in constructive mathematics.[14]

The hyperreal numbers as developed by Edwin Hewitt, Abraham Robinson and others extend the set of the
real numbers by introducing infinitesimal and infinite numbers, allowing for building infinitesimal calculus in a
way closer to the original intuitions of Leibniz, Euler, Cauchy and others.

Edward Nelson's internal set theory enriches the Zermelo–Fraenkel set theory syntactically by introducing a
unary predicate "standard". In this approach, infinitesimals are (non-"standard") elements of the set of the real
numbers (rather than being elements of an extension thereof, as in Robinson's theory).

The continuum hypothesis posits that the cardinality of the set of the real numbers is ; i.e. the smallest
infinite cardinal number after , the cardinality of the integers. Paul Cohen proved in 1963 that it is an axiom
independent of the other axioms of set theory; that is: one may choose either the continuum hypothesis or its
negation as an axiom of set theory, without contradiction.
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In the physical sciences, most physical constants such as the universal gravitational constant, and physical
variables, such as position, mass, speed, and electric charge, are modeled using real numbers. In fact, the
fundamental physical theories such as classical mechanics, electromagnetism, quantum mechanics, general
relativity and the standard model are described using mathematical structures, typically smooth manifolds or
Hilbert spaces, that are based on the real numbers, although actual measurements of physical quantities are of
finite accuracy and precision.

Physicists have occasionally suggested that a more fundamental theory would replace the real numbers with
quantities that do not form a continuum, but such proposals remain speculative.[15]

With some exceptions, most calculators do not operate on real numbers. Instead, they work with finite-
precision approximations called floating-point numbers. In fact, most scientific computation uses floating-point
arithmetic. Real numbers satisfy the usual rules of arithmetic, but floating-point numbers do not.

Computers cannot directly store arbitrary real numbers with infinitely many digits. The achievable precision is
limited by the number of bits allocated to store a number, whether as floating-point numbers or arbitrary-
precision numbers. However, computer algebra systems can operate on irrational quantities exactly by
manipulating formulas for them (such as   or ) rather than their rational or decimal
approximation.[16] It is not in general possible to determine whether two such expressions are equal (the
constant problem).

A real number is called computable if there exists an algorithm that yields its digits. Because there are only
countably many algorithms,[17] but an uncountable number of reals, almost all real numbers fail to be
computable. Moreover, the equality of two computable numbers is an undecidable problem. Some
constructivists accept the existence of only those reals that are computable. The set of definable numbers is
broader, but still only countable.

In set theory, specifically descriptive set theory, the Baire space is used as a surrogate for the real numbers
since the latter have some topological properties (connectedness) that are a technical inconvenience. Elements
of Baire space are referred to as "reals".

Mathematicians use the symbol R, or, alternatively, ℝ, the letter "R" in blackboard bold (encoded in Unicode
as U+211D ℝ DOUBLE-STRUCK CAPITAL R (HTML &#8477; · &reals;, &Ropf;)), to represent
the set of all real numbers. As this set is naturally endowed with the structure of a field, the expression field of
real numbers is frequently used when its algebraic properties are under consideration.

The sets of positive real numbers and negative real numbers are often noted R+ and R−,[18] respectively; R+
and R− are also used.[19] The non-negative real numbers can be noted R≥0 but one often sees this set noted R+

∪ {0}.[18] In French mathematics, the positive real numbers and negative real numbers commonly include
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zero, and these sets are noted respectively ℝ+ and ℝ−.[19] In this understanding, the respective sets without
zero are called strictly positive real numbers and strictly negative real numbers, and are noted ℝ+* and
ℝ−*.[19]

The notation Rn refers to the Cartesian product of n copies of R, which is an n-dimensional vector space over
the field of the real numbers; this vector space may be identified to the n-dimensional space of Euclidean
geometry as soon as a coordinate system has been chosen in the latter. For example, a value from R3 consists
of a tuple of three real numbers and specifies the coordinates of a point in 3‑dimensional space.

In mathematics, real is used as an adjective, meaning that the underlying field is the field of the real numbers
(or the real field). For example, real matrix, real polynomial and real Lie algebra. The word is also used as a
noun, meaning a real number (as in "the set of all reals").

The real numbers can be generalized and extended in several different directions:

The complex numbers contain solutions to all polynomial equations and hence are an
algebraically closed field unlike the real numbers. However, the complex numbers are not an
ordered field.
The affinely extended real number system adds two elements +∞ and −∞. It is a compact
space. It is no longer a field, or even an additive group, but it still has a total order; moreover, it
is a complete lattice.
The real projective line adds only one value ∞. It is also a compact space. Again, it is no longer
a field, or even an additive group. However, it allows division of a non-zero element by zero. It
has cyclic order described by a separation relation.
The long real line pastes together ℵ1* + ℵ1 copies of the real line plus a single point (here ℵ1*
denotes the reversed ordering of ℵ1) to create an ordered set that is "locally" identical to the
real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ1
in the long real line but not in the real numbers. The long real line is the largest ordered set that
is complete and locally Archimedean. As with the previous two examples, this set is no longer
a field or additive group.
Ordered fields extending the reals are the hyperreal numbers and the surreal numbers; both of
them contain infinitesimal and infinitely large numbers and are therefore non-Archimedean
ordered fields.
Self-adjoint operators on a Hilbert space (for example, self-adjoint square complex matrices)
generalize the reals in many respects: they can be ordered (though not totally ordered), they
are complete, all their eigenvalues are real and they form a real associative algebra. Positive-
definite operators correspond to the positive reals and normal operators correspond to the
complex numbers.

Completeness of the real numbers
Continued fraction
Definable real numbers
Positive real numbers
Real analysis
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a. More precisely, given two complete totally ordered fields, there is a unique isomorphism
between them. This implies that the identity is the unique field automorphism of the reals that is
compatible with the ordering.
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