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A Minimal Example of Multicomputation
Multicomputation is an important new paradigm, but one that can be quite difficult to understand. Here my goal is to
discuss a minimal example: multiway systems based on numbers. Many general multicomputational phenomena will
show up here in simple forms (though others will not). And the involvement of numbers will often allow us to make
immediate use of traditional mathematical methods.

A multiway system can be described as taking each of its states and repeatedly replacing it according to some rule or rules
with a collection of states, merging any states produced that are identical. In our Physics Project, the states are
combinations of relations between elements, represented by hypergraphs. We’ve also often considered string substitution
systems, in which the states are strings of characters. But here I’ll consider the case in which the states are numbers, and
for now just single integers.

And in this case multiway systems can be represented in a particularly simple way, with each state s just being repeatedly
replaced according to:
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s → (s), … , }

For a “binary branching” case the update rule is

and one can represent the evolution of the system by the multiway graph which begins:

and continues (indicating  by red and  by blue):

With arbitrary “symbolic”  this (“free multiway system”) tree is the only structure one can get. But things can get much

less trivial when there are forms for ,  that “evaluate” in some way, because then there can be identities that make

branches merge. And indeed most of what we’ll be discussing here is associated with this phenomenon and with the
“entanglements” between states to which it leads.

It’s worth noting that the specific setup we’re using here avoids quite a lot of the structural complexity that can exist in
multicomputational systems. In the general case, states can contain multiple “tokens”, and updates can also “consume”
multiple tokens. In our case here, each state just contains one token—which is a single number—and this is what is
“consumed” at each step. (In our Physics Project, a state corresponds to a hyperedge which contains many hyperedge
tokens, and the update rule typically consumes multiple hyperedges. In a string substitution system, a state is a character
string which contains many character tokens, and the update typically consumes multiple—in this case, adjacent—
character tokens.)

With the setup we’re using here there’s one input but multiple outputs (2 in the example above) each time the update rule
is applied (with the inputs and outputs each being individual numbers). It’s also perfectly possible to consider cases in
which there are multiple inputs as well as multiple outputs. But here we’ll restrict ourselves to the “one-to-many”
(“traditional multiway”) case. And it’s notable that this case is exceptionally easy to describe in the Wolfram Language:
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Multiway Systems Based on Addition
As our first example, let’s consider multiway systems whose rules just involve addition.

The trivial (“one-input, one-output”) rule

gives a multiway graph corresponding to a “one-way number line”:

The rule

gives a “two-way number line”:

But even

gives a slightly more complicated multiway graph:
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What’s going on here? Basically each triangle represents an identity. For example, starting from 1, applying 
twice gives 3, which is the same result as applying  once. Or, writing the rule in the form

the triangles are all the result of the fact that in this case

For the  “number line” rule, it’s obvious that we’ll eventually visit every integer—and the +1, +2 rule also
visits every integer.

Consider now instead of +1 and +2 the case of +2 and +3:

After a few steps this gives:

Contents



12/9/21, 6:26 PM Multicomputation with Numbers: The Case of Simple Multiway Systems—Wolfram Physics Bulletins

https://www.wolframphysics.org/bulletins/2021/10/multicomputation-with-numbers-the-case-of-simple-multiway-systems/ 5/76

Continuing a little longer gives:

It’s a little difficult to see what’s going on here. It helps to show which edges correspond to +2 and +3:
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We’ll return to this a little later, but once again we can see that there are cycles in this graph, corresponding to simple
“commutativity identities”, such as

and

as well as “LCM identities” such as

(Note that in this case, all integers above 1 are eventually generated.)

Let’s look now at a case with slightly larger integers:

After 6 steps one gets a simple grid
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essentially made up of “commutativity identities”. But continuing a little longer one sees that it begins to “wrap around”

eventually forming a kind of “tube” with a spiral grid on the outside:

The “grid” is defined by “commutativity identities”. But the reason it’s a “closed tube” is that there are also “LCM
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identities”. To understand this, unravel everything into a grid with +4 and +7 directions—then draw lines between the
duplicated numbers:

The “tube” is formed by rolling the grid up in such a way as to merge these numbers. But now if we assume that the
multiway graph is laid out (in 3D) so that each graph edge has unit length, application of Pythagoras’s theorem in the

picture above shows that the effective circumference of the tube is .

In another representation, we can unravel the tube by plotting numbers at {x, y} according to their decomposition in the
form :

(From this representation we can see that every value of n can be reached so long as .)

For the rule

the multiway graph forms a tube of circumference  which can be visualized in 3D as:
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And what’s notable here is that even though we’re just following a simple discrete arithmetic process, we’re somehow
“inevitably getting geometry” out of it. It’s a tiny, toy example of a much more general and powerful phenomenon that
seems to be ubiquitous in multicomputational systems—and that in our models of physics is basically what leads to the
emergence of things like the limiting continuum structure of space.

We’ve seen a few specific example of “multiway addition systems”. What about the more general case?

For

a “tube” is generated with circumference

where  = {a, b}/GCD[a, b]

After enough steps, all integers of the form k GCD[a, b] will eventually be produced—which means that all integers are
produced if a and b are relatively prime. There’s always a threshold, however, given by FrobeniusNumber[{a, b}]—which
for a and b relatively prime is just a b – a – b.

By the way, a particular number n—if it’s going to be generated at all—will first be generated at step

(Note that the fact that the multiway graph approximates a finite-radius tube is a consequence of the commensurability of

any integers a and b. If we had a rule like , we’d get an infinite 2D grid.)

For

a tube is again formed, with a circumference effectively determined by the smaller pair (after GCD reduction) of a, b and c.
And if GCD[a, b, c] = 1, all numbers above FrobeniusNumber[{a, b, c}] will eventually be generated.

Pure Multiplication
One of the simplest cases of multiway systems are those based on pure multiplication. An example is (now starting from 1
rather than 0):
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In general, for

we’ll get a simple 2D grid whenever a and b aren’t both powers of the same number. With d elements in the rule we’ll get a
d-dimensional grid. For example,

gives a 3D grid:

If the multipliers in the rule are all powers of the same number, the multiway graph degenerates to some kind of ladder. In
the case

this is just:
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while for

it is

and in general for

it is a “width-m” ladder graph.

Multiplication and Addition: n ⟼ {a n, n + b}
Let’s look now at combining multiplication and addition—to form what we might call affine multiway systems. As a first
example, consider the case (which I actually already mentioned in A New Kind of Science):
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Considering the simplicity of the rule by which it was generated, this result looks surprisingly complex. One immediate
result is that after t steps, the total number of distinct numbers reached is Fibonacci[t – 1], which increases exponentially
like . Eventually the  ensures that every integer is generated. But the  often “jumps ahead”, and
since the maximum number generated at step t is  the “average density” of numbers falls exponentially like 

.

Continuing the evolution further and using a different rendering we get the very “geometrical” (planar) structure
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What can we say about this structure? Apart from the first few steps (rendered at the center), it consists of a spiral of
pentagons. Each pentagon (except the one at the center) has the form

reflecting the relation

Going out from the center, each successive layer in the spiral has twice the number of pentagons, with each pentagon at a
given layer “spawning” two new pentagons at the next layer.
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Removing “incomplete pentagons” this can be rendered as:

What about other rules of the general form:

Here are the corresponding (“complete polygon”) results for  through 5:

The multiway graphs in these cases correspond to spirals of ( )-gons defined by the identity

or equivalently

At successive layers in the spiral, the number of ( )-gons increases like .

Eventually the evolution of the system generates all possible integers, but at step t the number of distinct integers
obtained so far is given by the generalized Fibonacci series obtained from

which for large t is
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where  is the k-nacci generalized golden ratio, which approaches  for large k.

If we consider

it turns out that one gets the same basic structure (with ( )-gons) for  as for . For example, with

one gets:

The Rule n ⟼ {2n + 1, 3n + 1}
For the rule

there are at first no equivalences that cause merging in the multiway graph:

But after 5 steps we get
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where now we see that 15 and 31 are connected “across branches”.

After 10 steps this becomes:

At a visual level this seems to consist of two basic components. First, a collection of loops, and second a collection of tree-
like “loose ends”. Keeping only complete loops and going a few more steps we get:
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Unlike in previous cases, the “loops” (AKA “polygons”) are not of constant size. Here are the first few that occur (note
these loops “overlap” in the sense that several “start the same way”):

As before, each of these loops in effect corresponds to an identity about compositions of functions—though now it matters
h t th iti li d t S f l th l b d t ( h k t d f thth
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what these compositions are applied to. So, for example, the 4  loop above corresponds to (where k stands for the
function ):

In explicit form this becomes:

where both sides evaluate to the same number, in this case 26815.

Much as in the Physics Project, we can think of each “loop” as beginning with the creation of a “branch pair”, and ending
with the merger of the different paths from each member of the pair. In a later section we’ll discuss the question of
whether every branch pair always in the end re-merges. But for now we can just enumerate mergers—and we find that the
first few occur at:

(Note that a merger can never involve more than two branches, since any given number has at most one “pre-image”
under  and one under .)

Here is a plot of the positions of the  mergers—together with a quadratic fit (indicated by the dotted line):

(As we’ll discuss later, the numbers at which these mergers occur are for example always of the form .)

Taking second differences indicates a certain apparent randomness:

What can we say about the overall structure of the multiway graph? One basic question is what numbers ever even occur
in the evolution of the system. Here are the first few, for evolution starting from 0:

And here are successive differences

th
Contents

https://www.wolframphysics.org/technical-introduction/the-updating-process-for-string-substitution-systems/testing-for-causal-invariance/#p-220


12/9/21, 6:26 PM Multicomputation with Numbers: The Case of Simple Multiway Systems—Wolfram Physics Bulletins

https://www.wolframphysics.org/bulletins/2021/10/multicomputation-with-numbers-the-case-of-simple-multiway-systems/ 19/76

Dividing successive m by the  number gives a progressive estimate of the density of numbers:

On a log-log scale this becomes

showing a rough fit to —and suggesting an asymptotic density of 0.

Note, by the way, that while the maximum gap grows on average linearly (roughly like 0.17 m)

the distance between gaps of size 1 shows evidence of remaining bounded:

Contents



12/9/21, 6:26 PM Multicomputation with Numbers: The Case of Simple Multiway Systems—Wolfram Physics Bulletins

https://www.wolframphysics.org/bulletins/2021/10/multicomputation-with-numbers-the-case-of-simple-multiway-systems/ 20/76

(A related result from the 1970s states that the original sequence contains infinite-length arithmetic progressions—
implying the presence of infinite runs of numbers whose differences are constant.)

The More General “Affine” Case: n ⟼ {a n + b, c n + d}
Not every rule of the form

leads to a complex multiway graph. For example

just gives a pure binary tree since 2n just adds a 1 at the beginning of the binary digit sequence of n, while  adds
one at the end:

Meanwhile

gives a simple grid

where at level t the numbers that appear are simply

and the pattern of use of the two cases in the rule makes it clear why the grid structure occurs.

Here are the behaviors of all inequivalent nontrivial rules of the form
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Here are the behaviors of all inequivalent nontrivial rules of the form

with constants up to 3:

“Ribbons” are seen only when . “Simple webs” are seen when . “Simple grids” are seen whenever the two
cases in the rule commute, i.e.

which occurs whenever

“Simple trees” are seen whenever
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In other cases there seems to be irregular merging, as in the  case above. And keeping only
nontrivial inequivalent cases these are the results after removing loose ends:

Note that adding another element in the rule can make things significantly more complicated. An example is:

After 8 steps this gives

or in another rendering:
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After a few more steps, with “loose ends” removed, one gets the still-rather-unilluminating result (though one that we will
discuss further in the next section):

The Phenomenon of Confluence
Will every branching of paths in the multiway graph eventually merge again? If they do, then the system is confluent
(which in this case is equivalent to saying that it’s causal invariant—an important property in our Physics Project).

It turns out that all rules of the following forms are confluent:

But among rules of the form
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ut a o g u es o  t e o

confluence depends on the values of a, b, c and d. When multiway graphs are “simple webs” or “simple grids” there is
obvious confluence. And when the graphs are simple trees, there is obviously not confluence.

But what about a case like the rule we discussed above:

We plotted above the “positions” of mergers that occur. But are there “enough” mergers to “rejoin” all branchings?

Here are the first few branchings that occur:

For the pair 3, 4 one can reach a “merged” end state on the following paths:

which are embedded in the whole multiway graph (without loose ends) as:

For the pair 9, 13 both eventually reach 177151, but 9 takes 13 steps to do so:

Here’s a summary of what we know about what happens with the first few branchings:
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So what about the total number of branchings and mergings? This is what happens for the first several steps:

The number of branchings at step t approximates

while the number of mergings seems to grow systematically more slowly, perhaps like 1. :

And based on this it seems plausible that the system is not in the end confluent. But how might we show this? And what is
the best way to figure out if any particular branch pair (say 21, 31) will ever merge?

One way to look for mergings is just to evolve the multiway graph from each member of the pair, and check if they overlap.
But as we can see even for the pair {3, 4} this effectively involves “treeing out” an exponential number of cases:

Is there a way to do this more efficiently, or in effect to prune the trees? A notable feature of the original rule is that the
numbers it generates always increase at each step. So one thing to do is just to discard all elements at a particular step in
one graph that cannot reach the “minimum frontier” in the other graph. But on its own, this leads to only very minor
reduction in the size of graph that has to be considered.

To find what is potentially a much more effective “optimization” let’s look at some examples of mergings:
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It’s clear that the final step has to consist of one application of  and one of  (i.e. one red edge and
one blue edge). But these examples suggest that there are also further regularities.

At the merging point it must be true that

for some integers u and v. But for this to be true, the merged value (i.e.  or ) must for example be equal to 1
mod 2, 3 and 6.

Using the structure one level back we also have:

or

implying that the merged value must be 3 mod 4, 7 mod 12, 13 mod 18 and 36 mod 31. Additional constraints from going
even further back imply in the end that the merged value must have the following pattern of residues:

But now let’s consider the whole system modulo k. Then there are just k possible values, and the multiway graph must be
finite. For example, for  we get:
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Dropping the “transient parts” leaves just:

These graphs can be thought of as reductions of the multiway graph (and, conversely, the multiway graph is a covering of
them). The graphs can also be thought of as finite automata that define regular languages whose elements are the “2” and
“3” transformations that appear on the edges. Any sequence of “2” and “3” transformations that can occur in the multiway
graph must then correspond to a valid word in this regular language. But what we have seen is that for certain values of k,
mergers in the multiway graph always occur at particular (“acceptor”) states in the finite automata.

In the case , every merger occurs at the 7 state. But by tracing possible paths in the finite automaton we now can
read off what sequences of transformations can lead to a merger:

And what’s notable is that only a certain fraction of all possible sequences of length m can occur; asymptotically, about
28%.

The most stringent analogous constraints come from the  graph:
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And we see that even for sequences of length 3 fewer are allowed than from the  graph:

Asymptotically the number of allowed sequences is about 3% of the  possible. And so the conclusion is that if one
wants to find mergings in the multiway graph it’s not necessary to tree out all possible sequences of transformations; one
only needs at most the 30× smaller number of sequences “accepted by the mod-144 finite automaton”. It’s possible to do a
little better than this, by looking not just at sequences allowed by the finite automaton for a particular k, but at finite
automata for a collection of values of k (say as in the table above).

But while these techniques deliver significant practical speedups they do not seem to significantly alter the asymptotic
resources needed. So what will it take to determine whether the pair {21, 31} ever merges?

I don’t know. And for example I don’t know any way to find an upper bound on the number of steps after which we’d be
able to say “if it hasn’t merged yet, it never will”. I’m sure that if we look at different branch pairs, there will be tricks for
particular cases. But I suspect that the general problem of determining merging will show computational irreducibility,
and that for example there will be no fundamentally better way to determine whether a particular branch pair has merged
after t steps than by essentially enumerating every possible evolution for that number of steps.

But if this is the case, it means that the general infinite-time question of whether a branch pair will merge is undecidable—
and can never be guaranteed to be answerable with a bounded amount of computational effort. It’s a lower bar to ask
whether the question can be answered using a finite proof in, say, Peano arithmetic. And I think it’s very likely that the
overall question of whether all branch pairs merge—so that the system is confluent—is a statement that can never, for
example, be established purely within Peano arithmetic. There are quite a few other candidates for the “simplest
‘numerical’ statement independent of Peano arithmetic”. But it seems at least conceivable that this one might be more
accessible to proof than most.

It’s worth mentioning, by the way, that (as we have seen extensively in the Physics Project) the presence of confluence
does not imply that a multiway system must show simple overall behavior. Consider for example the rule (also discussed
at the end of the previous section):
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at the end of the previous section):

Running for a few more steps, removing loose ends and rendering in 3D gives:

But despite this complexity, this is a confluent rule. It’s already an indication of this that mergings pretty much “keep up”
with branchings in this multiway system:

The first few branchings (now all 3-way) are:
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All the pairs here merge (often somewhat degenerately) in just a few steps. Here are examples of how they work:

Branchial Space and Numerical Value Space
Consider the first few steps of the rule

At each “layer” we can form a branchial graph by joining nodes that have common ancestors on the step before:
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Continuing for a few more steps we get:

We can imagine (as we do in our Physics Project) that in an appropriate (if rather subtle) limit such branchial graphs can
be thought of as defining a “branchial space” in which each node has a definite position. (One of many subtleties is that
the particular branchial graphs we show here are specific to the particular “layering” of the multiway graph that we’ve
used; different foliations would give different results.)

But whereas in our Physics Project and many other applications of the multicomputational paradigm the only real way to
define “positions” for nodes in the multiway graph is through something like branchial space, there is a much more direct
approach that can be taken in multiway systems based on numbers—because every node is labeled by a number which one
can imagine directly using as a coordinate.

As an example, let’s take the multiway graph above, and make the horizontal position of each node be determined by its
value:
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Or, better, by the log of its value:

Continuing for more steps, we get:

Now, for example, we can ask—given the particular choice of layers we have made here—what the distribution of
(logarithmic) values reached on successive layers will be, and one finds that the results converge quite quickly:

(By the way, in these results we’ve not included “path weights”, which determine how many different paths lead from the
initial number to a particular result. In the example shown, including path weights doesn’t make a difference to the form
of the final result.)

So what is the correspondence between the layout of nodes in “branchial space” and in “numerical value space”? Here’s
what happens if we lay out a branchial graph using (logarithmic) numerical value as x coordinate:
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what happens if we lay out a branchial graph using (logarithmic) numerical value as x coordinate:

Perhaps more useful is to plot branchial distance versus (logarithmic) numerical distance for every pair of connected
nodes at a particular layer:

And at least in this case, there is perhaps a slight correlation to be seen.

Negative Numbers
The rules we’ve considered so far all involve only non-negative numbers. What happens if we include negative numbers?
Generally the results are very similar to those with non-negative numbers. For example:

just gives
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in which there is effectively both a “positive” and “negative” “web”.

A rule like

turns out to yield essentially only positive numbers, yielding after removing loose ends

gives a more balanced collection of positive and negative numbers (with positive numbers indicated by dark nodes), but
the final graph is still quite similar:
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“Floor” and Related Rules
So far we’ve considered only rules based on ordinary arithmetic functions. As a first example of going beyond that,
consider the rule:

Running this for 50 steps we get:

A notable feature here is that only one “fresh” node is added at each step—and the whole thing grows like a Fermat spiral.
After 250 steps the multiway graph has the form
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which we can readily see is essentially a “binary tree superimposed on a spiral”.

Dividing by 3 instead of 2 makes it a ternary tree:

Using Round instead of Floor gives a mixed binary and ternary tree:
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What about rules of the form:

Here are the results for a few values of a:

Continuing

for more steps we get:
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has far fewer “loose ends”:

What are the “grid patches”? Picking out some of the patches we can see they’re places where a number that can be

“halved a lot” appears—and just like in our pure multiplication rules above,  and 3n represent commuting operations

that form a grid:
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Conditional Division, Inverse Iterations and the 3n+1 Problem
Including Floor[ ] is a bit like having different functions for even and odd n. What happens if we do this more
explicitly? Consider for example

The result is essentially identical to the Floor case:

Here are a couple of other cases, at least qualitatively similar to what we’ve seen before:
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But now consider as we did at the beginning:

What is the inverse of this? One can think of it as being

or

which gives for example
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or continuing for longer:

How about
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Now the “inverse” is:

But in this case since most numbers are not reached in the original iteration, most “don’t have inverses”. However, picking
an initial number like 4495, which happens to be a merge point, yields:

Note that this “inverse iteration” always monotonically decreases towards 0—reaching it in at most  steps.

But now we can compare with the well-known 3n+1 problem, defined by the “singleway” iteration:

And while in this case the intermediate numbers sometimes increase, all known initial conditions eventually evolve to a
simple cycle:

But now we can “invert” the problem, by considering the rule:

equivalent to

which gives after 10 steps:
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g p

Continuing this to 25 steps one gets:

Removing loose ends this then becomes:
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or after more steps, and rendered in 3D:

The 3n+1 problem now asks whether as the multiway graph is built, it will eventually include every number. But from a
multicomputational point of view there are new questions to ask—like whether the “inverse-3n+1-problem” multiway
system is confluent.

The first few branchings in the multiway graph in this case are

and all of these re-merge after at most 13 steps. The total number of branchings and mergings on successive steps is given
by:
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Including more steps one gets

which suggests that there is indeed confluence in this case—though, like for the problem of termination in the original
3n+1 problem, it may be extremely difficult to determine this for sure.

Other Kinds of Rules
All the rules we’ve used so far are—up to conditionals—fundamentally “linear”. But we can also consider “polynomial”
rules. With pure powers, as in

the multiway graph is just the one associated with the addition of exponents:

In a case like

the graph is a pure tree
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while in a case like

there is “early merging”, followed by a pure tree:

There are also cases like

which lead to “continued merging”
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but when loose ends are removed, they are revealed to behave in rather simple ways:

In a case like

however, there is at least slightly more complicated merging (shown here after removing loose ends):
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If we include negative numbers we find cases like:

But in other “polynomial” cases one tends to get only trees; a merging corresponds to a solution to a high-degree
Diophantine equation, and things like the ABC conjecture tend to suggest that very few of these exist.

Returning to the “linear” case, we can consider—as we did above—multiway graphs mod k. Such graphs always have just k
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nodes. And in a case like

with graph

they have a simple interpretation—as “remainder graphs” which one can use to compute a given input number n mod k.
Consider for example the number 867, with digits 8, 6 and 7. Start at the 0 node. Follow 8 red arrows, followed by a blue
one, thus reaching node 3. Then follow 6 red arrows, followed by blue. Then 7 red arrows, followed by blue. The node that
one ends up on by this procedure is exactly the remainder. And in this case it is node 6, indicating that Mod[867, 7] is 6.

Not too surprisingly, there is a definite structure to such remainder graphs. Here is the sequence of “binary remainder
graphs” generated from the rule

for successive values of k:

Continuing a number-theoretical theme, we may note that the familiar “divisor graph” for a number can be considered as
a multiway graph generated by the rule:

Here’s an example for 100:
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Transitive reduction gives a graph which in this case is essentially a grid:

Other initial numbers can give more complicated graphs

but in general the transitive reduction is essentially a grid graph of dimension PrimeNu :

A lt ti t l ki t di i l k f l t l hi h t f b t th li t f
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As an alternative to looking at divisors, we can look, for example, at a rule which transforms any number to the list of
numbers relatively prime to it:

The transitive reduction of this is always trivial, however:

One general way to “probe” any function  is to look at a multiway graph generated by the rule:

Here, for example, is the result for

starting with

:
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Once again, the transitive reduction is very simple:

As another example, we can look at:

where each “efflorescence” corresponds to a prime gap:
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As a final example we can consider the digit-reversal function:
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Non-Integer Values
In almost everything we’ve discussed so far, we’ve been considering only integer values, both in our rules and our initial
conditions. So what happens if we start a rule like

with a non-integer value? Rather than taking a specific initial value, we can just use a symbolic value x—and it then turns
out that the multiway graph is the same regardless of the value of x, integer or non-integer:

What if the rule contains non-integer values? In a case like

the basic properties of addition ensure that the multiway graph will always have the same grid structure, regardless of a, b
and the initial value x:

But in a case like
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things are more complicated. For arbitrary symbolic a, b and initial x, there are no relations that apply, and so the
multiway graph is a pure tree:

For a specific value of b, however, there are already relations, and a more complicated structure develops:

Continuing for more steps and removing loose ends we get
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which is to be compared to the result from above for , :

What happens if we choose a non-integer value of b, say:

We immediately see that there are “special relations” associated with and its powers:
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Continuing for longer we get the somewhat complex structure:

or in a different rendering with loose ends removed:
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This structure is very dependent on the algebraic properties of . For a transcendental number like π there are no

“special relations”, and the multiway graph will be a tree. For we get

and for :

Complex Numbers
There are many possible generalizations to consider. An immediate one is to complex integers.

For real numbers  always generates a grid. But for example

instead generates
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Continuing for longer, the graph becomes:

One feature of having values that are complex numbers is that these values themselves can be used to define coordinates
to lay out the nodes of the multiway graph in the plane—giving in this case:

or after more steps:
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Similarly

gives

The non-branching rule

yields

while

gives
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If we combine multiplication with addition, we get different forms—and we can make some interesting mathematical
connections. Consider rules of the form

where c is some complex number. I considered such rules in A New Kind of Science as a practical model of plant growth
(though already then I recognized their connection to multiway systems). If we look at the case

the multiway graph is structurally just a tree:

But if we plot nodes at the positions in the complex plane corresponding to their values we get:
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Continuing this, and deemphasizing the “multiway edges” we see a characteristic “fractal-like” pattern:

Note that this is in some sense dual to the typical “line segment iteration” nested construction:

Adding a third “real” branch

we get
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And with

the result builds up to a typical Sierpinski pattern:

These pictures suggest that at least in the limit of an infinite number of steps there will be all sorts of merging between
branches. And indeed it is fairly straightforward to prove this. But what about after, say, t steps?

The result from each branch for the rule
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is a polynomial such as

or

So now the question of merging becomes a question of finding solutions to equations which equate the polynomials

associated with different possible branches. The simplest nontrivial case equates branch {1, 1} with branch {2, 2}, yielding
the equation:

with solution

We can see this merging in action with the rule:

The core of what it generates is the repetitive structure:
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A few additional results are (where the decimals are algebraic numbers of degree 6, and a is a real number):

In a case like

there is an “early merger”
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but then the system just generates a tree:

The family of rules of the form

shows more elaborate behavior. For  we get:
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Continuing for more steps this becomes:

For  we get instead:
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If we look at the actual distribution of values obtained by such rules we find for example:

If we go beyond multiway systems with pure “1 + c n” rules we soon get results very similar to ones we’ve seen in previous
sections. For example

gives multiway graph (after removing loose ends)
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Placing nodes according to their numerical values this then has the form:

Collections of Numbers, and Causal Graphs
In studying multiway systems based on complex numbers we’re effectively considering a special case of multiway systems
based on collections of numbers. If the complex-number rules are linear, then what we have are iterated affine maps—that
form the basis for what I’ve called geometric substitution systems.

As a slightly more general case we can consider multiway systems in which we take pairs of numbers v and apply the rule

where now a and b are  matrices. If both matrices are the form  then this is equivalent to the case of
complex numbers. But we can also for example consider a rule like

which yields
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or after more steps and in a different rendering:

Laying this out in 2D using the actual pairs of numbers as coordinates, this becomes:

Here are samples of typical behavior with  0, 1 matrices:

Beyond pure matrix multiplication, we can also consider a rule that adds constant vectors, as in:

We can also think in a more “elementwise” way, constructing for example simple rules such as
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This generates the multiway graph:

Continuing for longer and removing loose ends yields:

Using values as coordinates then gives:
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In our Physics Project and other applications of multicomputation, we often discuss causal graphs, that track the causal
relationships between updating events. So why is it that these haven’t come up in our discussion of multiway systems
based on numbers? The basic reason is that when our states are individual numbers, there’s no reason to separately track
updating events and transformations of states because these are exactly the same—because every time a state (i.e. a
number) is transformed the number as a whole is “consumed” and new numbers are produced. Or, in other words, the
flow of “data” is the same as the flow of “causal information”—so that if we did record events, there’d just be one on each
edge of the multiway graph.

But the story is different as soon as our states don’t just contain individual “atomic” things, like single numbers. Because
then an updating event can affect just part of a state—and asking what causal relationships there may be between events
becomes something separate from asking about the transformation of whole states.

With a rule of the form, say,

things are still fairly trivial. Yes, there are separate “x” and “y” events. But they don’t mix, so we’ll just get two independent
causal graphs. Things can be less trivial in a case like the one above, of the form:

But now there is a different problem. Let’s say that the rule transforms {x, y} to {y + 1, x + 1}. How should we decompose
that into “elementary events”? We could say there’s one event that swaps x and y, and others that add 1. Or something
different. It’s hard to know.

So why haven’t we encountered this kind of problem in other multicomputational systems, say in hypergraph rewriting
systems or string substitution systems? The point is that in these systems the underlying elements always have a certain
unique identity, which allows their “flow” to be traced. In our Physics Project, for example, each hypergraph updating
event that occurs affects certain particular “atoms of space” (that we can think of as being labeled by unique identifiers)—
and so we can readily trace how the effects of different events are related. Similarly, in a string substitution system, we can
trace which characters at which positions in the string were affected by a given event, and we can then trace which new
characters at which new positions these affect.

But in a system based on numbers this tracing of “unique elements” doesn’t really apply. We might think of 3 as being 
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. But there’s nothing that uniquely tags these 1s, and allows us to trace how they affect 1s that might make up
other numbers. In a sense, the whole point of numbers is to abstract away from the labeling of individual objects—and just
ask the aggregate question of “how many” there are. So in effect the “packaging” of information into numbers can be
thought of as “washing out” causal relationships.

When we give a rule based on numbers what it primarily does is to specify transformations for values. But it’s perfectly
possible to add an ancillary “causal rule”, that, for example, can define which elements in an “input” list of numbers
should be thought of as being “used as the inputs” to produce particular numbers in an output list of numbers.

There’s another subtlety here, though. The point of a multiway graph is to represent all possible different histories for a
system, corresponding to all possible sequences of transformations for states. A particular history corresponds to a
particular path in the multiway graph. And if—as in a multiway system based on single numbers—each step in this path is
associated with a single, specific event, then the causal graph associated with a particular history will always be trivial.

But in something like a hypergraph- or string-based system there’s usually a nontrivial causal graph even for a single path
of history. And the reason is that each transformation between states can involve multiple events—acting on different
parts of the state—and there can be nontrivial causal relationships between these events “mediated” by shared elements in
the state.

One can think of the resulting causal graph as representing causal relationships in “spacetime”. Successive events define
the passage of time. And the layout of different elements in each state can be thought of as defining something like space.
But in a multiway system based on single numbers, there isn’t a natural notion of space associated with each state,
because the states are just single numbers which “don’t have enough structure” to correspond to something like space.

If we’re dealing with collections of numbers, there’s more possibility of “having something like space”. But it’s easiest to
imagine this when one’s dealing with very large collections of numbers, and when the “locations” of the numbers are more
important than their values—at which point the fact that they’re numbers (rather than, say, characters in a string) doesn’t
make much difference.

But in a multiway system one’s dealing with multiple paths of history, not just one. And one can then start asking about
causal relationships not just within a single path of history, but across different paths: a multiway causal graph. And that’s
the kind of causal graph we’ll readily construct for a multiway system based on numbers. For a system based on strings or
hypergraphs there’s a certain wastefulness to starting with a standard multiway graph of transformations between states.
Because if one looks at all possible states, there’s typically a lot of repetition between the “context” of different updating
events.

And so an alternative approach is to look just as the “tokens” that are involved in each event: hyperedges in a hypergraph,
or runs of characters in a string. So how does it work for a multiway system based on numbers? For this we have to again
think about how our states are decomposed for purposes of events, or, in other words, what the “tokens” in them are. And
for multiway systems based on single numbers, the natural thing is just to consider each number as a token.

For collections of numbers, it’s less obvious how things should work. And one possibility is to treat each number in the
collection as a separate token, and perhaps to ignore any ordering or placement in the collection. We could then end up
with a “multi-token” rule like

whose behavior we can represent with a token-event graph:
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But given this, there is then the issue of deciding how collections of tokens should be thought of as aggregated into states.
And in general multi-token numerical multiway systems represent a whole separate domain of exploration from what we
have considered here.

A basic point, however, is that while our investigations of things like hypergraph and string systems have usually had a
substantial “spatial component”, our investigation of multiway systems based on numbers tends to be “more branchial”,
and very much centered around the relationships between different branches of history. This does not mean that there is
nothing “geometrical” about what is going on. And in fact we fully expect that in an appropriate limit branchial space will
indeed have a geometrical structure—and we have even seen examples of this here. It is just that that geometrical
structure is—in the language of physics—about the space of quantum states, not about physical space. So this means that
our intuition about ordinary physical space won’t necessarily apply. But the important point is that by studying multiway
systems based on numbers we can now hope to sharpen our understanding and intuition about things like quantum
mechanics.

Much More to Explore…
The basic setup for multiway systems based on numbers is very simple. But what we’ve seen here is that—just like for so
many other kinds of systems in the computational universe—the behavior of multiway systems based on numbers can be
far from simple.

In many ways, what’s here just scratches the surface of multiway systems based on numbers. There is much more to
explore, in many different directions. There are many additional connections to traditional mathematics (and notably
number theory) to be made. There are also questions about the geometrical structures that can be generated, and their
mathematical characterization
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mathematical characterization.

In the general study of multicomputational systems, branchial—and causal—graphs are important. But here we have
barely begun to consider them. A particularly important issue that we haven’t addressed at all is that of alternative
possible foliations. In general it has been difficult to characterize these. But it seems possible that in multiway systems
based on numbers these may be amenable to investigation with some kind of mathematical techniques. In addition, for
things like our Physics Project questions about the coordinatization of branchial space are of great significance—and the
“natural coordinatizability” of numbers makes multiway systems based on numbers potentially an attractive place to study
these kinds of questions.

Here we’ve considered only ordinary multiway systems, in which the rules always transform one object into several. It’s
also perfectly possible to study more general multicomputational systems in which the rules can “consume” multiple
objects—and this is particularly straightforward to set up in the case of numbers.

Here we’ve mostly looked at multiway systems whose states are individual integers. But we can consider other kinds of
numbers and collections of numbers. We can also imagine generalizing to other kinds of mathematical objects. These
could be algebraic constructs (such a polynomials) based on ordinary real or complex numbers. But they could also, for
example, be objects from universal algebra. The basic setup for multiway systems—involving repeatedly applying
functions—can be thought of as equivalent to repeatedly multiplying by elements (say, generators) of a semigroup.
Without any relations between these elements, the multiway graphs we’ll get will always be trees. But if we add relations
things can be more complicated.

Multiway systems based on semigroups are in a sense “lower level” than ones based on numbers. In something like
arithmetic, one already has immediate knowledge of operations and equivalences between objects. But in a semigroup,
these all have to be built up. Of course, if one goes beyond integers, equivalences can be difficult to determine even
between numbers (say different representations of radicals or, worse, transcendental numbers).

In their basic construction, multiway systems are fundamentally discrete—involving as they do discrete states, discrete
branches, and discrete notions like merging. But in our Physics Project and other applications of the multicomputational
paradigm it’s often of interest to think about “continuum limits” of multiway systems. And given that real numbers
provide the quintessential example of a continuum one might suppose that by somehow looking at multiway systems
based on real numbers one could understand their continuum limit.

But it’s not so simple. Yes, one can imagine allowing a whole “real parameter’s worth” of outputs from the multiway rule.
But the issue is how to “knit these together” from one step to the next. The situation is somewhat similar to what happens
when one looks at ensembles of random walks, or stochastic partial differential equations. But with multiway systems
things are both cleaner and more general. The closest analogy is probably to path integrals of the kind considered in
quantum mechanics. And in a sense this is not surprising, because it is precisely the appearance of multiway systems in
our Physics Project that seems to lead to quantum mechanics—and in a “continuum limit” to the path integral there.

It’s not clear just how multiway systems are best generalized to the continuum case. But multiway systems based on
numbers seem to provide a potentially promising bridge to existing mathematical investigations of the continuum—and I
think have a good chance of revealing some elegant and powerful mathematics.

I first looked at multiway systems based on numbers back in the early 1990s, and I always meant to come back and look at
them further. But what we’ve found here is that they’re richer and more interesting than I ever imagined. And particularly
from what we’ve now seen I expect them to have a very bright future, and for all sorts of important science and
mathematics to connect to them, and flow from them.

Thanks
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