
Algorithms
The Science in Computer Science

30 March 2022

©AlephTalks, 2022

3/30/2022 Algorithms 2

Information Sources

● Wikipedia
● Association for Computing Machinery

3/30/2022 Algorithms 3

What Is An Algorithm?

● In mathematics and computer science, an
algorithm is a finite sequence of well-defined
instructions, typically used to solve a class of
specific problems or to perform a computation.

● Algorithms are used as specifications for
performing calculations and data processing.

3/30/2022 Algorithms 4

What Is A Heuristic Algorithm?

● A heuristic algorithm is an approach to
problem solving that may not be fully
specified or may not guarantee correct or
optimal results, especially in problem
domains where there is no well-defined
correct or optimal result

3/30/2022 Algorithms 5

What Is An Algorithm?

● As an effective method, an algorithm can be
expressed within a finite amount of space and
time, and in a well-defined formal language for
calculating a function.

● Starting from an initial state and initial input
(perhaps empty), the instructions describe a
computation that, when executed, proceeds
through a finite number of well-defined
successive states, eventually producing
"output” and terminating at a final ending state.

3/30/2022 Algorithms 6

P vs NP Problem

● The P (polynomial time) versus NP
(nondeterministic polynomial time) problem is a
major unsolved problem in computer science.

● It asks whether every problem whose solution
can be quickly verified can also be solved
quickly.

3/30/2022 Algorithms 7

P vs NP Problem
● The informal term quickly, used above, means the

existence of an algorithm solving the task that runs in
polynomial time, such that the time to complete the task
varies as a polynomial function on the size of the input to
the algorithm (as opposed to, say, exponential time).

● The general class of questions for which some algorithm
can provide an answer in polynomial time is "P" or "class
P". For some questions, there is no known way to find an
answer quickly, but if one is provided with information
showing what the answer is, it is possible to verify the
answer quickly.

● The class of questions for which an answer can be verified
in polynomial time is NP, which stands for
"nondeterministic polynomial time".

3/30/2022 Algorithms 8

NP Hard Problem
● .In computational complexity theory, NP-hardness (non-

deterministic polynomial-time hardness) is the defining
property of a class of problems that are informally "at least
as hard as the hardest problems in NP". A simple example
of an NP-hard problem is the subset sum problem.

● A more precise specification is: a problem H is NP-hard
when every problem L in NP can be reduced in polynomial
time to H; that is, assuming a solution for H takes 1 unit
time, H's solution can be used to solve L in polynomial
time. As a consequence, finding a polynomial time
algorithm to solve any NP-hard problem would give
polynomial time algorithms for all the problems in NP. As it
is suspected that P≠NP, it is unlikely that such an algorithm
exists.

●

● A common misconception is that the NP in "NP-hard"
stands for "non-polynomial" when in fact it stands for "non-
deterministic polynomial acceptable problems".[4] It is
suspected that there are no polynomial-time algorithms for
NP-hard problems, but that has not been proven.[5]
Moreover, the class P, in which all problems can be solved
in polynomial time, is contained in the NP class.[6]

3/30/2022 Algorithms 9

NP Complete Problem
● In computational complexity theory, a problem is NP-

complete when:

– it is a problem for which the correctness of each
solution can be verified quickly (namely, in polynomial
time) and a brute-force search algorithm can find a
solution by trying all possible solutions.

– the problem can be used to simulate every other
problem for which we can verify quickly that a solution
is correct. In this sense, NP-complete problems are the
hardest of the problems to which solutions can be
verified quickly. If we could find solutions of some NP-
complete problem quickly, we could quickly find the
solutions of every other problem to which a given
solution can be easily verified

3/30/2022 Algorithms 10

NP Complete Problem
● The name "NP-complete" is short for "nondeterministic

polynomial-time complete".

● In this name, "nondeterministic" refers to nondeterministic
Turing machines, a way of mathematically formalizing the
idea of a brute-force search algorithm.

● Polynomial time refers to an amount of time that is
considered "quick" for a deterministic algorithm to check a
single solution, or for a nondeterministic Turing machine to
perform the whole search.

● "Complete" refers to the property of being able to simulate
everything in the same complexity class.

3/30/2022 Algorithms 11

NP Hard Problem
By Behnam Esfahbod, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?
curid=3532181

3/30/2022 Algorithms 12

Traveling Salesman Problem

● The travelling salesman problem (also called the
travelling salesperson problem or TSP) asks the
following question: "Given a list of cities and the
distances between each pair of cities, what is the
shortest possible route that visits each city exactly
once and returns to the origin city?" It is an NP-hard
problem in combinatorial optimization, important in
theoretical computer science and operations research.

● The travelling purchaser problem and the vehicle
routing problem are both generalizations of TSP.

3/30/2022 Algorithms 13

Traveling Salesman Problem

● In the theory of computational complexity, the
decision version of the TSP (where given a
length L, the task is to decide whether the
graph has a tour of at most L) belongs to the
class of NP-complete problems.

● Thus, it is possible that the worst-case running
time for any algorithm for the TSP increases
superpolynomially (but no more than
exponentially) with the number of cities.

3/30/2022 Algorithms 14

Traveling Salesman Problem
Heuristic

● In combinatorial optimization, Lin–Kernighan is
one of the best heuristics for solving the
symmetric travelling salesman problem.

● Briefly, it involves swapping pairs of sub-tours
to make a new tour. It is a generalization of 2-
opt and 3-opt. 2-opt and 3-opt work by
switching two or three edges to make the tour
shorter. Lin–Kernighan is adaptive and at each
step decides how many paths between cities
need to be switched to find a shorter tour.

3/30/2022 Algorithms 15

Traveling Salesman Problem
Heuristic

● The input to the algorithm is an undirected
graph G = (V, E) with vertex set V, edge set E,
and (optionally) numerical weights on the edges
in E. The goal of the algorithm is to partition V
into two disjoint subsets A and B of equal (or
nearly equal) size, in a way that minimizes the
sum T of the weights of the subset of edges that
cross from A to B. If the graph is unweighted,
then instead the goal is to minimize the number
of crossing edges; this is equivalent to
assigning weight one to each edge.

3/30/2022 Algorithms 16

Traveling Salesman Problem
Heuristic

● The algorithm maintains and improves a
partition, in each pass using a greedy algorithm
to pair up vertices of A with vertices of B, so that
moving the paired vertices from one side of the
partition to the other will improve the partition.
After matching the vertices, it then performs a
subset of the pairs chosen to have the best
overall effect on the solution quality T. Given a
graph with n vertices, each pass of the
algorithm runs in time O(n2 log n).

3/30/2022 Algorithms 17

Traveling Salesman Problem Pseudo Code
function Kernighan-Lin(G(V, E)) is

● determine a balanced initial partition of the nodes into sets A and B

● do

● compute D values for all a in A and b in B

● let gv, av, and bv be empty lists

● for n := 1 to |V| / 2 do

● find a from A and b from B, such that g = D[a] + D[b] − 2×c(a, b) is maximal

● remove a and b from further consideration in this pass

● add g to gv, a to av, and b to bv

● update D values for the elements of A = A \ a and B = B \ b

● end for

● find k which maximizes g_max, the sum of gv[1], ..., gv[k]

● if g_max > 0 then

● Exchange av[1], av[2], ..., av[k] with bv[1], bv[2], ..., bv[k]

● until (g_max ≤ 0)

● return G(V, E)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

