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Information Sources

● Wikipedia
● Association for Computing Machinery
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What Is An Algorithm?

● In mathematics and computer science, an 
algorithm is a finite sequence of well-defined 
instructions, typically used to solve a class of 
specific problems or to perform a computation.

● Algorithms are used as specifications for 
performing calculations and data processing.
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What Is A Heuristic Algorithm?

● A heuristic algorithm is an approach to 
problem solving that may not be fully 
specified or may not guarantee correct or 
optimal results, especially in problem 
domains where there is no well-defined 
correct or optimal result
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What Is An Algorithm?

● As an effective method, an algorithm can be 
expressed within a finite amount of space and 
time, and in a well-defined formal language for 
calculating a function. 

● Starting from an initial state and initial input 
(perhaps empty), the instructions describe a 
computation that, when executed, proceeds 
through a finite number of well-defined 
successive states, eventually producing 
"output”  and terminating at a final ending state.
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P vs NP Problem

● The P (polynomial time) versus NP 
(nondeterministic polynomial time) problem is a 
major unsolved problem in computer science. 

● It asks whether every problem whose solution 
can be quickly verified can also be solved 
quickly.
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P vs NP Problem
● The informal term quickly, used above, means the 

existence of an algorithm solving the task that runs in 
polynomial time, such that the time to complete the task 
varies as a polynomial function on the size of the input to 
the algorithm (as opposed to, say, exponential time). 

● The general class of questions for which some algorithm 
can provide an answer in polynomial time is "P" or "class 
P". For some questions, there is no known way to find an 
answer quickly, but if one is provided with information 
showing what the answer is, it is possible to verify the 
answer quickly. 

● The class of questions for which an answer can be verified 
in polynomial time is NP, which stands for 
"nondeterministic polynomial time".
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NP Hard Problem
● .In computational complexity theory, NP-hardness (non-

deterministic polynomial-time hardness) is the defining 
property of a class of problems that are informally "at least 
as hard as the hardest problems in NP". A simple example 
of an NP-hard problem is the subset sum problem.

● A more precise specification is: a problem H is NP-hard 
when every problem L in NP can be reduced in polynomial 
time to H; that is, assuming a solution for H takes 1 unit 
time, H's solution can be used to solve L in polynomial 
time. As a consequence, finding a polynomial time 
algorithm to solve any NP-hard problem would give 
polynomial time algorithms for all the problems in NP. As it 
is suspected that P≠NP, it is unlikely that such an algorithm 
exists.

●

● A common misconception is that the NP in "NP-hard" 
stands for "non-polynomial" when in fact it stands for "non-
deterministic polynomial acceptable problems".[4] It is 
suspected that there are no polynomial-time algorithms for 
NP-hard problems, but that has not been proven.[5] 
Moreover, the class P, in which all problems can be solved 
in polynomial time, is contained in the NP class.[6]
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NP Complete Problem
● In computational complexity theory, a problem is NP-

complete when:

– it is a problem for which the correctness of each 
solution can be verified quickly (namely, in polynomial 
time) and a brute-force search algorithm can find a 
solution by trying all possible solutions.

– the problem can be used to simulate every other 
problem for which we can verify quickly that a solution 
is correct. In this sense, NP-complete problems are the 
hardest of the problems to which solutions can be 
verified quickly. If we could find solutions of some NP-
complete problem quickly, we could quickly find the 
solutions of every other problem to which a given 
solution can be easily verified
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NP Complete Problem
● The name "NP-complete" is short for "nondeterministic 

polynomial-time complete". 

● In this name, "nondeterministic" refers to nondeterministic 
Turing machines, a way of mathematically formalizing the 
idea of a brute-force search algorithm. 

● Polynomial time refers to an amount of time that is 
considered "quick" for a deterministic algorithm to check a 
single solution, or for a nondeterministic Turing machine to 
perform the whole search. 

● "Complete" refers to the property of being able to simulate 
everything in the same complexity class.
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NP Hard Problem
By Behnam Esfahbod, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?
curid=3532181
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Traveling Salesman Problem

● The travelling salesman problem (also called the 
travelling salesperson problem or TSP) asks the 
following question: "Given a list of cities and the 
distances between each pair of cities, what is the 
shortest possible route that visits each city exactly 
once and returns to the origin city?" It is an NP-hard 
problem in combinatorial optimization, important in 
theoretical computer science and operations research.

● The travelling purchaser problem and the vehicle 
routing problem are both generalizations of TSP.
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Traveling Salesman Problem

● In the theory of computational complexity, the 
decision version of the TSP (where given a 
length L, the task is to decide whether the 
graph has a tour of at most L) belongs to the 
class of NP-complete problems. 

● Thus, it is possible that the worst-case running 
time for any algorithm for the TSP increases 
superpolynomially (but no more than 
exponentially) with the number of cities.
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Traveling Salesman Problem 
Heuristic

● In combinatorial optimization, Lin–Kernighan is 
one of the best heuristics for solving the 
symmetric travelling salesman problem.

● Briefly, it involves swapping pairs of sub-tours 
to make a new tour. It is a generalization of 2-
opt and 3-opt. 2-opt and 3-opt work by 
switching two or three edges to make the tour 
shorter. Lin–Kernighan is adaptive and at each 
step decides how many paths between cities 
need to be switched to find a shorter tour.
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Traveling Salesman Problem 
Heuristic

● The input to the algorithm is an undirected 
graph G = (V, E) with vertex set V, edge set E, 
and (optionally) numerical weights on the edges 
in E. The goal of the algorithm is to partition V 
into two disjoint subsets A and B of equal (or 
nearly equal) size, in a way that minimizes the 
sum T of the weights of the subset of edges that 
cross from A to B. If the graph is unweighted, 
then instead the goal is to minimize the number 
of crossing edges; this is equivalent to 
assigning weight one to each edge.
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Traveling Salesman Problem 
Heuristic

● The algorithm maintains and improves a 
partition, in each pass using a greedy algorithm 
to pair up vertices of A with vertices of B, so that 
moving the paired vertices from one side of the 
partition to the other will improve the partition. 
After matching the vertices, it then performs a 
subset of the pairs chosen to have the best 
overall effect on the solution quality T. Given a 
graph with n vertices, each pass of the 
algorithm runs in time O(n2 log n).
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Traveling Salesman Problem Pseudo Code
function Kernighan-Lin(G(V, E)) is

●     determine a balanced initial partition of the nodes into sets A and B

●     do

●         compute D values for all a in A and b in B

●         let gv, av, and bv be empty lists

●         for n := 1 to |V| / 2 do

●             find a from A and b from B, such that g = D[a] + D[b] − 2×c(a, b) is maximal

●             remove a and b from further consideration in this pass

●             add g to gv, a to av, and b to bv

●             update D values for the elements of A = A \ a and B = B \ b

●         end for

●         find k which maximizes g_max, the sum of gv[1], ..., gv[k]

●         if g_max > 0 then

●             Exchange av[1], av[2], ..., av[k] with bv[1], bv[2], ..., bv[k]

●     until (g_max ≤ 0)

● return G(V, E)
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