
To create an optimal method for encoding information, researchers represented it in a graph that takes
the form of a richly interconnected web of booklets that explodes outward. Each square in the graph
represents one single bit of information from a message.
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By carefully constructing a multidimensional and well-connected graph, a team of researchers has �nally created a long-sought locally testable

code that can immediately betray whether it’s been corrupted.

S
uppose you are trying to transmit a message. Convert each character into bits, and each bit

into a signal. Then send it, over copper or �ber or air. Try as you might to be as careful as

possible, what is received on the other side will not be the same as what you began with. Noise

never fails to corrupt.

In the 1940s, computer scientists �rst confronted the unavoidable problem of noise. Five decades later,

they came up with an elegant approach to sidestepping it: What if you could encode a message so that it

would be obvious if it had been garbled before your recipient even read it? A book can’t be judged by its

cover, but this message could.

They called this property local testability, because such a message can be tested super-fast in just a few

spots to ascertain its correctness. Over the next 30 years, researchers made substantial progress toward

creating such a test, but their e�orts always fell short. Many thought local testability would never be

achieved in its ideal form.
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Now, in a preprint released on November 8, the computer scientist Irit Dinur of the Weizmann Institute

of Science and four mathematicians, Shai Evra, Ron Livne, Alex Lubotzky and Shahar Mozes, all at the

Hebrew University of Jerusalem, have found it.

“It’s one of the most remarkable phenomena that I know of in mathematics or computer science,” said

Tom Gur of the University of Warwick. “It’s been the holy grail of an entire �eld.”

Their new technique transforms a message into a super-canary, an object that testi�es to its health

better than any other message yet known. Any corruption of signi�cance that is buried anywhere in its

superstructure becomes apparent from simple tests at a few spots.

“This is not something that seems plausible,” said Madhu Sudan of Harvard University. “This result

suddenly says you can do it.”

Most prior methods for encoding data relied on randomness in some form. But for local testability,

randomness could not help. Instead, the researchers had to devise a highly nonrandom graph structure

entirely new to mathematics, which they based their new method on. It is both a theoretical curiosity

and a practical advance in making information as resilient as possible.

Coding 101

Noise is ubiquitous in communication. To analyze it systematically, researchers �rst represent

information as a sequence of bits, 1s and 0s. We can then think of noise as a random in�uence that �ips

certain bits.

There are many methods for dealing with this noise. Consider a piece of information, a message as

short and simple as 01. Modify it by repeating each piece of it — each bit — three times, to get 000111.

Then, even if noise happens to corrupt, say, the second and sixth bits — changing the message to

010110 — a receiver can still correct the errors by taking majority votes, twice (once for the 0s, once for

the 1s).

Such a method of modifying a message is called a code. In this case, since the code also comes with a

procedure for �xing errors, it is called an error-correcting code. Codes are like dictionaries, each one

de�ning a certain set of codewords, such as 000111.

To work well, a code must have several properties. First, the codewords in it should not be too similar:

If a code contained the codewords 0000 and 0001, it would only take one bit-�ip’s worth of noise to

confuse the two words. Second, codewords should not be too long. Repeating bits may make a message

more durable, but they also make it take longer to send.

Irit Dinur of the Weizmann Institute of Science helped construct an error-correcting code with a
combination of ideal properties, which remain constant even as codewords scale up in size.
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These two properties are called distance and rate. A good code should have both a large distance

(between distinct codewords) and a high rate (of transmitting real information). But how can you

obtain both properties at once? In 1948, Claude Shannon showed that any code whose codewords were

simply chosen at random would have a nearly optimal trade-o� between the two properties. However,

choosing codewords completely at random would make for an unpredictable dictionary that was

excessively hard to sort through. In other words, Shannon showed that good codes exist, but his

method for making them didn’t work well.

“It was an existential result,” said Henry Yuen of Columbia University.

Over the next 40 years, computer scientists worked to �gure out nonrandom recipes for arranging bits

that approached the random ideal. By the late 1980s, their codes were used in everything from CDs to

satellite transmissions.

In 1990, researchers formulated the idea of local testability. But this property was di�erent. If you

picked a code at random, as Shannon advised, there was no way it could be a locally testable code.

These were the albino butter�ies in the universe of random codes — beautiful, if they existed.

“You actually have to work much harder to even show that they exist,” said Yuen. “Never mind coming

up with an explicit example.”

Graphs as Codes

To understand why testability is so hard to obtain, we need to think of a message not just as a string of

bits, but as a mathematical graph: a collection of vertices (dots) connected by edges (lines). This

equivalence has been central to the understanding of codes ever since the �rst clever codes were

created by Richard Hamming, two years after Shannon’s result. (The graphical perspective became

particularly in�uential after a 1981 paper by R. Michael Tanner.)

Hamming’s work set the stage for the ubiquitous error-correcting codes of the 1980s. He came up with

a rule that each message should be paired with a set of receipts, which keep an account of its bits. More

speci�cally, each receipt is the sum of a carefully chosen subset of bits from the message. When this

sum has an even value, the receipt is marked 0, and when it has an odd value, the receipt is marked 1.

Each receipt is represented by one single bit, in other words, which researchers call a parity check or

parity bit.

Hamming speci�ed a procedure for appending the receipts to a message. A recipient could then detect

errors by attempting to reproduce the receipts, calculating the sums for themselves. These Hamming

codes work remarkably well, and they are the starting point for seeing codes as graphs and graphs as

codes.
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“For us, to think about a graph and to think about a code is the same thing,” said Dana Moshkovitz of

the University of Texas, Austin.

To make a graph from a code, start with a codeword. For each bit of information, draw a vertex (or

node), called a digit node. Then draw a node for each of the parity bits; these are called parity nodes.

Finally, draw lines from each parity node to the digit nodes that are supposed to add up to form its

parity value. You have just created a graph from a code.

Seeing codes and graphs as equivalent became integral to the art of making codes. In 1996, Michael

Sipser and Daniel Spielman used the method to create a breakthrough code out of a kind of graph called

an expander graph. Their code still couldn’t provide local testability, but it proved optimal in other

ways and eventually served as the basis for the new results.

Expanding the Possibilities

Expander graphs are distinguished by two properties that can seem contradictory. First, they are

sparse: Each node is connected to relatively few other nodes. Second, they have a property called

expandedness — the reason for their name — which means that no set of nodes can be bottlenecks that

few edges pass through. Each node is well connected to other nodes, in other words — despite the

scarcity of the connections it has.

“Why should such an object ever exist?” said Evra. “It’s not so far-fetched to think that if you’re

sparse, then you’re not so connected.”

But expander graphs are actually surprisingly easy to create. If you construct a graph in a random way,

choosing connections at random between nodes, an expander graph will inevitably result. They’re like

a source of pure, unre�ned randomness, making them natural building blocks for the good codes that

Shannon pointed toward.
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Sipser and Spielman worked out how to turn an expander graph into a code. The codewords they came

up with were built from many much-shorter words produced by a Hamming code, which they called a

small code. The bits of their codewords were represented as the edges of the expander graph. And all

the receipts for the small code were represented at each node.

In e�ect, Sipser and Spielman showed that if you de�ne the small codes at each node with good

properties, then because the graph is so well connected, those properties propagate to the global code.

This propagation gave them a way to create a good code.

“Expansion, expansion and again expansion,” said Evra. “That’s the secret for success.”

However, local testability was not possible. Suppose that you had a valid codeword from an expander

code, and you removed one receipt, or parity bit, from one single node. That would constitute a new

code, which would have many more valid codewords than the �rst code, since there would be one less

receipt they needed to satisfy. For someone working o� the original code, those new codewords would

satisfy the receipts at most nodes — all of them, except the one where the receipt was erased. And yet,

because both codes have a large distance, the new codeword that seems correct would be extremely far

from the original set of codewords. Local testability was simply incompatible with expander codes.

To obtain testability, researchers would have to �gure out how to work against the randomness that

had formerly been so helpful. In the end, the researchers went where randomness could not: into

higher dimensions.

The Opposite of Random

It wasn’t always clear they could make it. Local testability was achieved by 2007, but only at the cost of

other parameters, like rate and distance. In particular, these parameters would degrade as a codeword

became large. In a world constantly seeking to send and store larger messages, these diminishing

returns were a major �aw. (Though in practice, even the existing locally testable codes were already

more powerful than most engineers needed to use.)



In 1996, Michael Sipser (left) and Daniel Spielman created a code based on expander graphs that had an
excellent combination of properties, but it failed to be at all locally testable.
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The hypothesis that a code could be found with optimal rate, distance and local testability — which all

stayed constant even as messages were scaled up — came to be known as the c  conjecture. The prior

results made some researchers think that a solution was inevitable. But progress started to slow, and

other results suggested the conjecture might be false.

“Many in the community thought that it was a dream that was probably too good to be true,” said Gur.

“Things looked quite grim.”

But in 2017, a new source of ideas emerged. Dinur and Lubotzky began working together while

attending a yearlong research program at the Israel Institute for Advanced Studies. They came to

believe that a 1973 result by the mathematician Howard Garland might hold just what computer

scientists sought. Whereas ordinary expander graphs are essentially one-dimensional structures, with

each edge extending in only one direction, Garland had created a mathematical object that could be

interpreted as an expander graph that spanned higher dimensions, with, for example, the graph’s

edges rede�ned as squares or cubes.

Garland’s high-dimensional expander graphs had properties that seemed ideal for local testability.

They must be deliberately constructed from scratch, making them a natural antithesis of randomness.

And their nodes are so interconnected that their local characteristics become virtually

indistinguishable from how they look globally.

“To me, high-dimensional expander graphs are a wonder,” said Gur. “You make a tiny tweak to one

part of the object and everything changes.”

Lubotzky and Dinur began trying to create a code based on Garland’s work that might solve the c

conjecture. Evra, Livne and Mozes soon joined the team, each of them experts in di�erent aspects of

high-dimensional expanders.

Soon they were presenting their work in seminars and talks, but not everyone was convinced that the

theory of high-dimensional expanders would pave the way forward. To understand it at all required

ascending a steep learning curve.

“At the time it seemed like space-age technology, sophisticated and exotic mathematical tools never

seen before in computer science,” said Gur. “It seemed like overkill.”

In 2020, the researchers got stuck, until they realized that they could get by without relying on the

most complicated new tools. The inspiration they had gained from high-dimensional expanders was

enough.

Propagating Mistakes

In their new work, the authors �gured out how to assemble expander graphs to create a new graph that

leads to the optimal form of locally testable code. They call their graph a left-right Cayley complex.

As in Garland’s work, the building blocks of their graph are no longer one-dimensional edges, but two-

dimensional squares. Each information bit from a codeword is assigned to a square, and parity bits (or

receipts) are assigned to edges and corners (which are nodes). Each node therefore de�nes the values

of bits (or squares) that can be connected to it.

To get a sense of what their graph looks like, imagine observing it from the inside, standing on a single

edge. They construct their graph such that every edge has a �xed number of squares attached.

Therefore, from your vantage point you’d feel as if you were looking out from the spine of a booklet.

However, from the other three sides of the booklet’s pages, you’d see the spines of new booklets

branching from them as well. Booklets would keep branching out from each edge ad in�nitum.

“It’s impossible to visualize. That’s the whole point,” said Lubotzky. “That’s why it is so

sophisticated.”

Crucially, the complicated graph also shares the properties of an expander graph, like sparseness and

connectedness, but with a much richer local structure. For example, an observer sitting at one vertex of

a high-dimensional expander could use this structure to straightforwardly infer that the entire graph

is strongly connected.
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“What’s the opposite of randomness? It’s structure,” said Evra. “The key to local testability is

structure.”

To see how this graph leads to a locally testable code, consider that in an expander code, if a bit (which

is an edge) is in error, that error can only be detected by checking the receipts at its immediately

neighboring nodes. But in a left-right Cayley complex, if a bit (a square) is in error, that error is visible

from multiple di�erent nodes, including some that are not even connected to each other by an edge.

In this way, a test at one node can reveal information about errors from far away nodes. By making use

of higher dimensions, the graph is ultimately connected in ways that go beyond what we typically even

think of as connections.

In addition to testability, the new code maintains rate, distance and other desired properties, even as

codewords scale, proving the c  conjecture true. It establishes a new state of the art for error-

correcting codes, and it also marks the �rst substantial payo� from bringing the mathematics of high-

dimensional expanders to bear on codes.

“It’s a completely new way of looking at these objects,” said Dinur.

Practical and theoretical applications should soon follow. Di�erent forms of locally testable codes are

now being used in decentralized �nance, and an optimal version will allow even better decentralized

tools. Furthermore, there are totally di�erent theoretical constructs in computer science, called

probabilistically checkable proofs, which have certain similarities with locally testable codes. Now that

we’ve found the optimal form of the latter, record-breaking versions of the former seem likely to

appear.

Ultimately, the new code marks a conceptual milestone, the greatest step yet beyond the boundaries for

codes set by randomness. The only question left is whether there are any true limits to how well

information can be forged.
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